Ridge estimation for regression models with crisp inputs and Gaussian fuzzy output

被引:25
|
作者
Hong, DH
Hwang, CH
Ahn, C
机构
[1] Catholic Univ Daegu, Sch Mech & Automot Engn, Kyongsan 712702, Kyungbuk, South Korea
[2] Catholic Univ Daegu, Dept Stat Informat, Kyungbuk 712702, South Korea
[3] Sejong Univ, Dept Appl Math, Seoul 143747, South Korea
关键词
fuzzy inference systems; fuzzy regression; ridge estimation; fuzzy system models;
D O I
10.1016/S0165-0114(03)00002-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper deals with ridge estimation of fuzzy multiple linear and nonlinear regression models with crisp inputs and Gaussian fuzzy output. Using ridge regression learning algorithm in the Lagrangian dual space, we describe a ridge estimation of fuzzy multiple linear regression model of Xu and Li (Fuzzy Sets and Systems 119 (2001) 215). It allows us to perform nonlinear regression for Xu and Li's model by constructing a fuzzy linear regression function in a high dimensional feature space. Experimental results are then presented which indicate the performance of this algorithm. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 50 条