Experimental estimation of the quantum Fisher information from randomized measurements

被引:40
作者
Yu, Min [1 ]
Li, Dongxiao [1 ]
Wang, Jingcheng [1 ]
Chu, Yaoming [1 ]
Yang, Pengcheng [1 ]
Gong, Musang [1 ]
Goldman, Nathan [2 ]
Cai, Jianming [1 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Int Joint Lab Quantum Sensing & Quantum Metrol, Wuhan 430074, Peoples R China
[2] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, CP 231,Campus Plaine, B-1050 Brussels, Belgium
[3] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[4] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ENTANGLEMENT; SPIN;
D O I
10.1103/PhysRevResearch.3.043122
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. It quantifies the metrological potential of quantum states in quantum parameter estimation measurements, and is intrinsically related to quantum geometry and multipartite entanglement of many-body systems. Using a nitrogen-vacancy center spin in diamond, we experimentally demonstrate a randomized-measurement method to extract the QFI of the qubit, for both pure and mixed states. We then apply this scheme to a 4-qubit state, using a superconducting quantum computer, and show that it provides access to the sub-QFI, which sets a lower bound on the QFI for general mixed states. We numerically study the scaling of statistical error, considering N-qubit states, to illustrate the advantage of our randomized-measurement approach in estimating the QFI and multipartite entanglement. Our results highlight the general applicability of our method to different quantum platforms, including solid-state spin systems, superconducting quantum computers, and trapped ions.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Quantum Fisher information and skew information correlations in dipolar spin system
    Muthuganesan, R.
    Chandrasekar, V. K.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [32] Quantum Fisher information in massless scalar field with a boundary
    Huang, Zhiming
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (29):
  • [33] Quantum Fisher Information: Probe to Measure Fractional Evolution
    El Anouz, K.
    El Allati, A.
    Salah, A.
    Saif, F.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (05) : 1460 - 1474
  • [34] Quantum Fisher information matrix in Heisenberg XY model
    Bakmou, L.
    Slaoui, A.
    Daoud, M.
    Laamara, R. Ahl
    QUANTUM INFORMATION PROCESSING, 2019, 18 (06)
  • [35] Quantum Fisher Information Dynamics in the Presence of Intrinsic Decoherence
    Alenezi, Maha
    Zidan, Nour
    Alhashash, Abeer
    Rahman, Atta Ur
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (05)
  • [36] Quantum Fisher Information: Probe to Measure Fractional Evolution
    K. El Anouz
    A. El Allati
    A. Salah
    F. Saif
    International Journal of Theoretical Physics, 2020, 59 : 1460 - 1474
  • [37] Quantum Fisher Information Gap for Systems with Nonlinear Hamiltonians
    Liu, Bo
    Huang, Yi-Xiao
    Wang, Xiao-Guang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (01) : 43 - 48
  • [38] Fisher information and quantum state estimation of two-coupled atoms in presence of two external magnetic fields
    Abu-Zinadah, Hanaa H.
    Abdel-Khalek, Sayed
    RESULTS IN PHYSICS, 2017, 7 : 4318 - 4323
  • [39] Local quantum Fisher information and local quantum uncertainty for general X states
    Yurischev, Mikhail A.
    Haddadi, Saeed
    PHYSICS LETTERS A, 2023, 476
  • [40] Random matrix theory approach to quantum Fisher information in quantum ergodic systems
    Pavlov, Venelin P.
    Chorbadzhiyska, Yoana R.
    Nation, Charlie
    Porras, Diego
    Ivanov, Peter A.
    PHYSICAL REVIEW E, 2024, 110 (02)