Experimental estimation of the quantum Fisher information from randomized measurements

被引:40
作者
Yu, Min [1 ]
Li, Dongxiao [1 ]
Wang, Jingcheng [1 ]
Chu, Yaoming [1 ]
Yang, Pengcheng [1 ]
Gong, Musang [1 ]
Goldman, Nathan [2 ]
Cai, Jianming [1 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Int Joint Lab Quantum Sensing & Quantum Metrol, Wuhan 430074, Peoples R China
[2] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, CP 231,Campus Plaine, B-1050 Brussels, Belgium
[3] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[4] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ENTANGLEMENT; SPIN;
D O I
10.1103/PhysRevResearch.3.043122
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. It quantifies the metrological potential of quantum states in quantum parameter estimation measurements, and is intrinsically related to quantum geometry and multipartite entanglement of many-body systems. Using a nitrogen-vacancy center spin in diamond, we experimentally demonstrate a randomized-measurement method to extract the QFI of the qubit, for both pure and mixed states. We then apply this scheme to a 4-qubit state, using a superconducting quantum computer, and show that it provides access to the sub-QFI, which sets a lower bound on the QFI for general mixed states. We numerically study the scaling of statistical error, considering N-qubit states, to illustrate the advantage of our randomized-measurement approach in estimating the QFI and multipartite entanglement. Our results highlight the general applicability of our method to different quantum platforms, including solid-state spin systems, superconducting quantum computers, and trapped ions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Fisher Information Universally Identifies Quantum Resources
    Tan, Kok Chuan
    Narasimhachar, Varun
    Regula, Bartosz
    PHYSICAL REVIEW LETTERS, 2021, 127 (20)
  • [22] Quantum Fisher information for a single qubit system
    Abdel-Khalek, S.
    Berrada, K.
    Obada, A. S. F.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (03)
  • [23] Quantum Fisher information and chaos in the Dicke model
    Song, L. J.
    Ma, J.
    Yan, D.
    Wang, X. G.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (08)
  • [24] Protecting Quantum Coherence and Quantum Fisher Information in Ohmic Reservoir
    Liu, Xiao-Zhi
    Long, Dan
    Zou, Hong-Mei
    Liu, Rongfang
    Yang, Jianhe
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (11) : 3600 - 3612
  • [25] Dynamical quantum Fisher information in the Ising model
    Xiong, Heng-Na
    Wang, Xiaoguang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (23-24) : 4719 - 4726
  • [26] Fermionic Correlation Functions from Randomized Measurements in Programmable Atomic Quantum Devices
    Naldesi, Piero
    Elben, Andreas
    Minguzzi, Anna
    Clement, David
    Zoller, Peter
    Vermersch, Benoit
    PHYSICAL REVIEW LETTERS, 2023, 131 (06)
  • [27] Quantum metrology with superposition spin coherent states: Insights from Fisher information
    Maleki, Yusef
    Scully, Marlan O.
    Zheltikov, Aleksei M.
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [28] Multiparameter estimation for a two-qubit system coupled to independent reservoirs using quantum Fisher information
    S. Bukbech
    K. El Anouz
    Z. El Allali
    N. Metwally
    A. El Allati
    Quantum Studies: Mathematics and Foundations, 2023, 10 : 405 - 428
  • [29] Multiparameter estimation for a two-qubit system coupled to independent reservoirs using quantum Fisher information
    Bukbech, S.
    El Anouz, K.
    El Allali, Z.
    Metwally, N.
    El Allati, A.
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2023, 10 (04) : 405 - 428
  • [30] Teleportation of quantum resources and quantum Fisher information under Unruh effect
    Jafarzadeh, M.
    Jahromi, H. Rangani
    Amniat-Talab, M.
    QUANTUM INFORMATION PROCESSING, 2018, 17 (07)