THREE-DIMENSIONAL SYSTEM OF GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS WITH DELAY

被引:31
作者
Caraballo, Tomas [1 ]
Real, Jose [1 ]
Marquez, Antonio M. [2 ]
机构
[1] Univ Seville, Dpto Ecuac Diferenciales & Numer, E-41080 Seville, Spain
[2] Univ Pablo Olavide, Dpto Econ Metodos Cuantitat & Hist Econ, Seville, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2010年 / 20卷 / 09期
关键词
Three-dimensional Navier-Stokes equations; Galerkin approximations; weak solutions; existence and uniqueness of strong solutions; global attractors; COCYCLE ATTRACTORS; WEAK SOLUTIONS; V-ATTRACTORS;
D O I
10.1142/S0218127410027428
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence and uniqueness of strong solutions of a three-dimensional system of globally modified Navier-Stokes equations with delay in the locally Lipschitz case. The asymptotic behavior of solutions, and the existence of pullback attractor are also analyzed.
引用
收藏
页码:2869 / 2883
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1988, Chicago Lectures in Mathematics
[2]  
[Anonymous], 2001, CAM T APP M
[3]   Attractors for 2D-Navier-Stokes models with delays [J].
Caraballo, T ;
Real, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :271-297
[4]  
Caraballo T, 2008, DISCRETE CONT DYN-B, V10, P760
[5]  
Caraballo T, 2006, ADV NONLINEAR STUD, V6, P411
[6]  
Constantin P., 2003, Fluid Dyn, V2, P117
[7]  
Crauel H., 1997, J DYN DIFFER EQU, V9, P307
[8]   ERGODICITY OF THE 2-D NAVIER-STOKES EQUATION UNDER RANDOM PERTURBATIONS [J].
FLANDOLI, F ;
MASLOWSKI, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :119-141
[9]  
Hale J.K., 1993, Introduction to Functional Differntial Equations
[10]   The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations [J].
Kloeden, P. E. ;
Valero, J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2082) :1491-1508