Optical microscopy measurements of kT-scale colloidal interactions

被引:49
作者
Bevan, Michael A. [1 ]
Eichmann, Shannon L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
关键词
Total internal reflection microscopy; Video microscopy; Confocal microscopy; Colloidal assembly; Soft matter; DENSITY-FUNCTIONAL THEORY; SHEAR-FLOW PARALLEL; CONFOCAL MICROSCOPY; ELECTROKINETIC LIFT; FORCES; PARTICLE; WALL; ATTRACTION; ENERGY; MOTION;
D O I
10.1016/j.cocis.2010.12.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding colloidal assembly processes requires knowledge of interactions between colloids, surfaces, and external fields on the scale of the thermal energy, kT. In this review, we discuss recent advances in the development of non-intrusive optical microscopy methods to measure kT-scale colloidal interactions. We begin with a brief historical overview of quantitative optical microscopy measurements of colloidal interactions, which provides a precedent for emerging techniques. We then review recent advances in methods and analyses associated with Total Internal Reflection Microscopy (TIRM), Video Microscopy (VM), and Confocal Scanning Laser Microscopy (CSLM). We limit the scope of this review to the use of these methods for quantitative measurements of kT-scale colloidal interactions. We also discuss how these methods can be used in an integrated fashion to measure complementary quantities based on each method's strengths. Finally, we conclude with an overview of current and future trends related to both method development and new applications. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 81 条
[1]   A HYDRODYNAMIC TECHNIQUE FOR MEASUREMENT OF COLLOIDAL FORCES [J].
ALEXANDER, BM ;
PRIEVE, DC .
LANGMUIR, 1987, 3 (05) :788-795
[2]   Self-diffusion in submonolayer colloidal fluids near a wall [J].
Anekal, Samartha G. ;
Bevan, Michael A. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (03)
[3]   Interpretation of conservative forces from Stokesian dynamic simulations of interfacial and confined colloids [J].
Anekal, SG ;
Bevan, MA .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (03)
[4]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[5]   Imaging energy landscapes with concentrated diffusing colloidal probes [J].
Bahukudumbi, Pradipkumar ;
Bevan, Michael A. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (24)
[6]   SAXS and SANS studies of polymer colloids [J].
Ballauff, M .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2001, 6 (02) :132-139
[7]   Like-charge attraction in confinement: myth or truth? [J].
Baumgartl, Joerg ;
Arauz-Lara, Jose Luis ;
Bechinger, Clemens .
SOFT MATTER, 2006, 2 (08) :631-635
[8]   Interfacial colloidal sedimentation equilibrium. I. Intensity based confocal microscopy [J].
Beckham, Richard E. ;
Bevan, Michael A. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (16)
[9]   Confocal Laser Imaging and Annealing of Quantum-Dot-Coated Silica Colloidal Crystals [J].
Beckham, Richard E. ;
Bevan, Michael A. .
LANGMUIR, 2010, 26 (06) :3779-3782
[10]   Fokker-Planck analysis of separation dependent potentials and diffusion coefficients in simulated microscopy experiments [J].
Beltran-Villegas, Daniel J. ;
Sehgal, Ray M. ;
Maroudas, Dimitrios ;
Ford, David M. ;
Bevan, Michael A. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (04)