Kernel Conditional Quantile Estimation via Reduction Revisited

被引:19
作者
Quadrianto, Novi [1 ]
Kersting, Kristian [2 ]
Reid, Mark D. [1 ]
Caetano, Tiberio S. [1 ]
Buntine, Wray L. [1 ]
机构
[1] NICTA, SML, Canberra, ACT, Australia
[2] Fraunhofer IAIS, St Augustin, Germany
来源
2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING | 2009年
关键词
Regression; Quantile Regression; Gaussian Processes; REGRESSION;
D O I
10.1109/ICDM.2009.82
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantile regression refers to the process of estimating the quantiles of a conditional distribution and has many important applications within econometrics and data mining, among other domains. In this paper, we show how to estimate these conditional quantile functions within a Bayes risk minimization framework using a Gaussian process prior. The resulting non-parametric probabilistic model is easy to implement and allows non-crossing quantile functions to be enforced. Moreover, it can directly be used in combination with tools and extensions of standard Gaussian Processes such as principled hyperparameter estimation, sparsification, and quantile regression with input-dependent noise rates. No existing approach enjoys all of these desirable properties. Experiments on benchmark datasets show that our method is competitive with state-of-the-art approaches.
引用
收藏
页码:938 / +
页数:2
相关论文
共 12 条
[1]   Quantile curves without crossing [J].
He, XM .
AMERICAN STATISTICIAN, 1997, 51 (02) :186-192
[2]   REGRESSION QUANTILES [J].
KOENKER, R ;
BASSETT, G .
ECONOMETRICA, 1978, 46 (01) :33-50
[3]  
Koenker R., 2005, Econometric Society Monographs, DOI [10.1017/CBO9780511754098, DOI 10.1017/CBO9780511754098]
[4]  
LANGFORD J, 2006, UAI
[5]  
Nickisch H, 2008, J MACH LEARN RES, V9, P2035
[6]  
Perlich C, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P977
[7]  
Rasmussen C. E., 1996, THESIS U TORONTO
[8]  
Seeger Matthias, 2004, Int J Neural Syst, V14, P69, DOI 10.1142/S0129065704001899
[9]   Non-crossing quantile regression via doubly penalized kernel machine [J].
Shim, Jooyong ;
Hwang, Changha ;
Seok, Kyung Ha .
COMPUTATIONAL STATISTICS, 2009, 24 (01) :83-94
[10]  
Takeuchi I, 2006, J MACH LEARN RES, V7, P1231