Infinitely many solutions for quasilinear elliptic equations involving (p, q)-Laplacian in R

被引:4
作者
Teng, Kaimin [1 ]
Zhang, Chao [2 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
山西省青年科学基金;
关键词
Quasilinear Schrodinger equation; Soliton solution; Infinitely many solutions; (p; q)-Laplacian; REACTION-DIFFUSION EQUATIONS; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; POSITIVE SOLUTIONS; Q-LAPLACIAN; EXISTENCE;
D O I
10.1016/j.nonrwa.2016.04.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, under some superquadratic conditions made on the nonlinearity f, we use variational approaches to establish the existence of infinitely many solutions to quasilinear elliptic equations with (p, q)-Laplacian -L(p)u - L(q)u + a(x)vertical bar u vertical bar(p-2)u + b(x)vertical bar u vertical bar(q-2)u = f (x, u) in R, where 1 < q < p, L(p)u = vertical bar u'vertical bar(p-2)u') + (vertical bar u(2))'vertical bar(p-2)(u(2))')'u, L(q)u = vertical bar u'vertical bar(q-2)u') + (vertical bar u(2))'vertical bar(q-2)(u(2))')'u. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:242 / 259
页数:18
相关论文
共 29 条
[1]   Non-autonomous perturbations for a class of quasilinear elliptic equations on R [J].
Alves, M. J. ;
Carriao, P. C. ;
Miyagaki, O. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :186-203
[2]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[3]  
[Anonymous], 1997, Minimax theorems
[4]  
[Anonymous], 1986, C BOARD MATH SCI
[5]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[6]  
Borovskii A. V., 1993, Journal of Experimental and Theoretical Physics, V77, P562
[7]  
Brezis H, 2010, SOBOLEV SPACES PARTI
[8]   Existence of a nontrivial solution for the (p, q)-Laplacian in RN without the Ambrosetti-Rabinowitz condition [J].
Chaves, Marcio Fialho ;
Ercole, Grey ;
Miyagaki, Olimpio Hiroshi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 114 :133-141
[9]   Multiple positive solutions to a class of modified nonlinear Schrodinger equations [J].
Chen, Jianqing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (02) :525-542
[10]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22