On Parameterised Quadratic Inverse Eigenvalue Problem

被引:2
|
作者
Xiang, Meiling [1 ]
Dai, Hua [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic inverse eigenvalue problem; multiparameter eigenvalue problem; smooth QR-decomposition; Newton method; NUMERICAL-METHODS; ALGORITHM; MATRICES;
D O I
10.4208/eajam.250321.230821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that if prescribed eigenvalues are distinct, then the parameterised quadratic inverse eigenvalue problem is equivalent to a multiparameter eigenvalue problem. Moreover, a sufficient condition for the problem solvability is established. In order to find approximate solution of this problem, we employ the Newton method based on the smooth QR-decomposition with column pivoting and prove its locally quadratic convergence. Numerical examples illustrate the effectiveness of the method. AMS subject classifications: 65F15 Key words: Quadratic inverse eigenvalue problem, multiparameter eigenvalue problem, smooth
引用
收藏
页码:185 / 200
页数:16
相关论文
共 50 条
  • [1] On a quadratic inverse eigenvalue problem
    Cai, Yunfeng
    Xu, Shufang
    INVERSE PROBLEMS, 2009, 25 (08)
  • [2] On a class of inverse quadratic eigenvalue problem
    Yuan, Yongxin
    Dai, Hua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2662 - 2669
  • [3] ON THE INVERSE SYMMETRIC QUADRATIC EIGENVALUE PROBLEM
    Lancaster, Peter
    Zaballa, Ion
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (01) : 254 - 278
  • [4] Solutions to a quadratic inverse eigenvalue problem
    Cai, Yun-Feng
    Kuo, Yuen-Cheng
    Lin, Wen-Wei
    Xu, Shu-Fang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (5-6) : 1590 - 1606
  • [5] INVERSE ITERATION FOR THE QUADRATIC EIGENVALUE PROBLEM
    LEUNG, AYT
    JOURNAL OF SOUND AND VIBRATION, 1988, 124 (02) : 249 - 267
  • [6] Solutions to an inverse monic quadratic eigenvalue problem
    Yuan, Yongxin
    Dai, Hua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (11) : 2367 - 2381
  • [7] A solution of the affine quadratic inverse eigenvalue problem
    Datta, Biswa Nath
    Sokolov, Vadim
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (07) : 1745 - 1760
  • [8] An inverse quadratic eigenvalue problem for damped gyroscopic systems
    Yuan, Yongxin
    Zhou, Lei
    Chen, Jinghua
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14): : 2572 - 2585
  • [9] An inverse quadratic eigenvalue problem for damped structural systems
    Yuan, Yongxin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [10] Solutions of the partially described inverse quadratic eigenvalue problem
    Kuo, Yuen-Cheng
    Lin, Wen-Wei
    Xu, Shu-Fang
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) : 33 - 53