Brauer configuration algebras: A generalization of Brauer graph algebras

被引:27
作者
Green, Edward L. [1 ]
Schroll, Sibylle [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Leicester, Dept Math, Univ Rd, Leicester LE1 7RH, Leics, England
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2017年 / 141卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
Brauer graph algebra; Multiserial algebra; Biserial algebra; Symmetric radical cubed zero algebra; Adjacency matrix of a graph; STABLE EQUIVALENCE; SYMMETRIC ALGEBRAS; BISERIAL ALGEBRAS; REPRESENTATIONS; RESOLUTIONS; EXTENSIONS; MUTATIONS; MODULES;
D O I
10.1016/j.bulsci.2017.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a generalization of a Brauer graph algebra which we call a Brauer configuration algebra. As. with Brauer graphs and Brauer graph algebras, to each Brauer configuration, there is an associated Brauer configuration algebra. We show that Brauer configuration algebras are finite dimensional symmetric algebras. After studying and analysing structural properties of Brauer configurations and Brauer configuration algebras, we show that a Brauer configuration algebra is multiserial; that is, its Jacobson radical is a sum of uniserial modules whose pairwise intersection is either zero or a simple module. The paper ends with a detailed study of the relationship between radical cubed zero Brauer configuration algebras, symmetric matrices with non-negative integer entries, finite graphs and associated symmetric radical cubed zero algebras. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:539 / 572
页数:34
相关论文
共 38 条
[1]  
Adachi Takahide, ARXIV150404827
[2]   Derived equivalences between symmetric special biserial algebras [J].
Aihara, Takuma .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (05) :1800-1825
[3]  
Antipov M. A., 2006, ST PETERSBURG MATH J, V17, P377
[4]   Resolutions over symmetric algebras with radical cube zero [J].
Benson, David J. .
JOURNAL OF ALGEBRA, 2008, 320 (01) :48-56
[5]  
Bocian R., 2003, Colloq. Math, V96, P121, DOI DOI 10.4064/CM96-1-11
[6]   On uniserial modules in the Auslander-Reiten quiver [J].
Boldt, Axel ;
Mojiri, Ahmad .
JOURNAL OF ALGEBRA, 2008, 319 (05) :1825-1850
[7]  
Drozd Yu., 1980, Lecture Notes in Math., V832, P242
[8]  
Duffield Drew, ARXIV150902478
[9]   Tilting Mutation of Weakly Symmetric Algebras and Stable Equivalence [J].
Dugas, Alex .
ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) :863-884
[10]   Resolutions of mesh algebras: periodicity and Calabi-Yau dimensions [J].
Dugas, Alex .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) :1151-1184