Adaptive mesh computation of polycrystalline pattern formation using a renormalization-group reduction of the phase-field crystal model

被引:73
作者
Athreya, Badrinarayan P.
Goldenfeld, Nigel
Dantzig, Jonathan A.
Greenwood, Michael
Provatas, Nikolas
机构
[1] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.76.056706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We implement an adaptive mesh algorithm for calculating the space and time dependence of the atomic density field in microscopic material processes. Our numerical approach uses the systematic renormalization-group formulation of a phase-field crystal model of a pure material to provide the underlying equations for the complex amplitude of the atomic density field-a quantity that is spatially uniform except near topological defects, grain boundaries, and other lattice imperfections. Our algorithm employs a hybrid formulation of the amplitude equations, combining Cartesian and polar decompositions of the complex amplitude. We show that this approach leads to an acceleration by three orders of magnitude in model calculations of polycrystalline grain growth in two dimensions.
引用
收藏
页数:14
相关论文
共 50 条
[1]  
[Anonymous], 2003, Physical Review B
[2]   Renormalization-group theory for the phase-field crystal equation [J].
Athreya, Badrinarayan P. ;
Goldenfeld, Nigel ;
Dantzig, Jonathan A. .
PHYSICAL REVIEW E, 2006, 74 (01)
[3]   Modeling melt convection in phase-field simulations of solidification [J].
Beckermann, C ;
Diepers, HJ ;
Steinbach, I ;
Karma, A ;
Tong, X .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) :468-496
[4]   Diffusive atomistic dynamics of edge dislocations in two dimensions [J].
Berry, J ;
Grant, M ;
Elder, KR .
PHYSICAL REVIEW E, 2006, 73 (03) :1-12
[5]   Concurrent coupling of length scales: Methodology and application [J].
Broughton, JQ ;
Abraham, FF ;
Bernstein, N ;
Kaxiras, E .
PHYSICAL REVIEW B, 1999, 60 (04) :2391-2403
[6]  
Callister Jr W.D., 1997, MAT SCI ENG, Vfourth
[7]   Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory [J].
Chen, LY ;
Goldenfeld, N ;
Oono, Y .
PHYSICAL REVIEW E, 1996, 54 (01) :376-394
[8]   Dynamics of an inhomogeneously coarse grained multiscale system [J].
Curtarolo, S ;
Ceder, G .
PHYSICAL REVIEW LETTERS, 2002, 88 (25) :4
[9]   Mapping molecular models to continuum theories for partially miscible fluids [J].
Denniston, C ;
Robbins, MO .
PHYSICAL REVIEW E, 2004, 69 (02) :021505-1
[10]   Matching conditions in atomistic-continuum modeling of materials [J].
E, WN ;
Huang, ZY .
PHYSICAL REVIEW LETTERS, 2001, 87 (13)