SENSITIVITY AND BACKWARD PERTURBATION ANALYSIS OF MULTIPARAMETER EIGENVALUE PROBLEMS

被引:4
作者
Ghosh, Arnab [1 ]
Alam, Rafikul [1 ]
机构
[1] IIT Guwahati, Dept Math, Gauhati 781039, India
关键词
eigenvalue; eigenvector; backward error; condition number; sensitivity; multiparameter eigenvalue problem; CONDITION NUMBERS; ERROR;
D O I
10.1137/18M1181377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a general framework for the sensitivity and backward perturbation analysis of linear as well as nonlinear multiparameter eigenvalue problems (MEPs). For a general norm on the space of MEPs, we present a comprehensive analysis of the sensitivity of simple eigenvalues of linear and nonlinear MEPs. We consider the condition number cond(lambda, W) of a simple eigenvalue lambda is an element of C-m of an MEP W and derive three equivalent representations of cond(lambda, W) of which two are eigenvector-free. Our eigenvector-free representation of cond(lambda, W) provides an alternative viewpoint of the sensitivity of lambda. We also analyze holomorphic perturbation of a simple eigenvalue of W when W varies holomorphically on a parameter t is an element of C-P. For lambda is an element of C-m, we consider the backward error eta(lambda, W) of lambda as an approximate eigenvalue of W and determine eta(lambda,W). We construct an optimal perturbation Delta W such that lambda is an eigenvalue of W + Delta W and parallel to Delta W parallel to = eta(lambda,W). We also consider the backward error eta(lambda,x, W) of an approximate eigenpair (lambda, x) and determine eta(lambda, x, W). Further, we construct an optimal perturbation Delta W such that W(lambda)x + Delta W(lambda)x = 0 and parallel to Delta W parallel to = eta(lambda, x, W).
引用
收藏
页码:1750 / 1775
页数:26
相关论文
共 50 条
  • [31] A contribution to perturbation analysis for total least squares problems
    Xie, Pengpeng
    Xiang, Hua
    Wei, Yimin
    NUMERICAL ALGORITHMS, 2017, 75 (02) : 381 - 395
  • [32] Backward error analysis for linearizations in heavily damped quadratic eigenvalue problem
    Chen, Hongjia
    Meng, Jie
    Sakurai, Tetsuya
    Wang, Xiang
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2019, 26 (04)
  • [33] ON THE APPLICATION OF MULTIPARAMETER INVERSE EIGENVALUE PROBLEM AND NUMERICAL METHODS FOR FINDING ITS SOLUTION
    Yaroshko, O. S.
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2016, 2 (122): : 159 - 166
  • [34] On the structured backward error of inexact Arnoldi methods for (skew)-Hermitian and (skew)-symmetric eigenvalue problems
    Liu, Ching-Sung
    Lee, Che-Rung
    BIT NUMERICAL MATHEMATICS, 2017, 57 (04) : 1083 - 1108
  • [35] On the structured backward error of inexact Arnoldi methods for (skew)-Hermitian and (skew)-symmetric eigenvalue problems
    Ching-Sung Liu
    Che-Rung Lee
    BIT Numerical Mathematics, 2017, 57 : 1083 - 1108
  • [36] Perturbation analysis for the periodic generalized coupled Sylvester equation
    Li, Hanyu
    Wang, Shaoxin
    Zheng, Chan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (10) : 2011 - 2026
  • [37] SENSITIVITY ANALYSIS OF NONLINEAR EIGENPROBLEMS
    Alam, Rafikul
    Ahmad, Sk Safique
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (02) : 672 - 695
  • [38] Backward perturbation analysis for the matrix equation ATXA + BTY B = D
    Xing-dong Yang
    Xiu-hong Feng
    Qing-quan He
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 281 - 288
  • [39] On condition numbers of polynomial eigenvalue problems
    Papathanasiou, Nikolaos
    Psarrakos, Panayiotis
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (04) : 1194 - 1205
  • [40] PALINDROMIC EIGENVALUE PROBLEMS: A BRIEF SURVEY
    Chu, Eric King-wah
    Huang, Tsung-Ming
    Lin, Wen-Wei
    Wu, Chin-Tien
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (3A): : 743 - 779