SENSITIVITY AND BACKWARD PERTURBATION ANALYSIS OF MULTIPARAMETER EIGENVALUE PROBLEMS

被引:4
作者
Ghosh, Arnab [1 ]
Alam, Rafikul [1 ]
机构
[1] IIT Guwahati, Dept Math, Gauhati 781039, India
关键词
eigenvalue; eigenvector; backward error; condition number; sensitivity; multiparameter eigenvalue problem; CONDITION NUMBERS; ERROR;
D O I
10.1137/18M1181377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a general framework for the sensitivity and backward perturbation analysis of linear as well as nonlinear multiparameter eigenvalue problems (MEPs). For a general norm on the space of MEPs, we present a comprehensive analysis of the sensitivity of simple eigenvalues of linear and nonlinear MEPs. We consider the condition number cond(lambda, W) of a simple eigenvalue lambda is an element of C-m of an MEP W and derive three equivalent representations of cond(lambda, W) of which two are eigenvector-free. Our eigenvector-free representation of cond(lambda, W) provides an alternative viewpoint of the sensitivity of lambda. We also analyze holomorphic perturbation of a simple eigenvalue of W when W varies holomorphically on a parameter t is an element of C-P. For lambda is an element of C-m, we consider the backward error eta(lambda, W) of lambda as an approximate eigenvalue of W and determine eta(lambda,W). We construct an optimal perturbation Delta W such that lambda is an eigenvalue of W + Delta W and parallel to Delta W parallel to = eta(lambda,W). We also consider the backward error eta(lambda,x, W) of an approximate eigenpair (lambda, x) and determine eta(lambda, x, W). Further, we construct an optimal perturbation Delta W such that W(lambda)x + Delta W(lambda)x = 0 and parallel to Delta W parallel to = eta(lambda, x, W).
引用
收藏
页码:1750 / 1775
页数:26
相关论文
共 50 条
  • [21] Backward error analysis and inverse eigenvalue problems for Hankel and Symmetric-Toeplitz structures
    Ahmad, Sk Safique
    Kanhya, Prince
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 406 (406)
  • [22] Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems
    Plestenjak, Bor
    Gheorghiu, Calin I.
    Hochstenbach, Michiel E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 585 - 601
  • [23] BACKWARD ERROR OF POLYNOMIAL EIGENVALUE PROBLEMS SOLVED BY LINEARIZATION OF LAGRANGE INTERPOLANTS
    Lawrence, Piers W.
    Corless, Robert M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (04) : 1425 - 1442
  • [24] PERTURBATION ANALYSIS OF LINEAR CONTROL PROBLEMS
    Petkov, Petko
    Konstantinov, Mihail
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (06): : 849 - 856
  • [25] Robust PSS design by probabilistic eigenvalue sensitivity analysis
    Tse, CT
    Wang, KW
    Chung, CY
    Tsang, KM
    ELECTRIC POWER SYSTEMS RESEARCH, 2001, 59 (01) : 47 - 54
  • [26] VARIATION-GRADIENT METHOD OF THE SOLUTION OF ONE CLASS OF NONLINEAR MULTIPARAMETER EIGENVALUE PROBLEMS
    Khlobystov, V. V.
    Podlevskyi, B. M.
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2009, 1 (97): : 70 - 78
  • [27] Randomized methods for computing joint eigenvalues, with applications to multiparameter eigenvalue problems and root finding
    He, Haoze
    Kressner, Daniel
    Plestenjak, Bor
    NUMERICAL ALGORITHMS, 2024,
  • [28] Probabilistic eigenvalue sensitivity analysis and PSS design in multimachine systems
    Chung, CY
    Wang, KW
    Tse, CT
    Bian, XY
    David, AK
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (04) : 1439 - 1445
  • [29] An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems
    Hammarling, Sven
    Munro, Christopher J.
    Tisseur, Francoise
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (03):
  • [30] Small-sample statistical estimates for the sensitivity of eigenvalue problems
    Gudmundsson, T
    Kenney, C
    Laub, AJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (04) : 868 - 886