Deep Learning Based Automatic Detection of Adequately Positioned Mammograms

被引:1
|
作者
Gupta, Vikash [1 ]
Taylor, Clayton [2 ]
Bonnet, Sarah [3 ]
Prevedello, Luciano M. [2 ]
Hawley, Jeffrey [2 ]
White, Richard D. [1 ]
Flores, Mona G. [4 ]
Erdal, Barbaros Selnur [1 ]
机构
[1] Mayo Clin, Dept Radiol, Jacksonville, FL 32224 USA
[2] Ohio State Univ, Dept Radiol, Columbus, OH 43210 USA
[3] West Virginia Sch Med, Dept Radiol, Morgantown, WV 26506 USA
[4] NVIDIA Inc, Med AI, Santa Clara, CA USA
来源
DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, AND AFFORDABLE HEALTHCARE AND AI FOR RESOURCE DIVERSE GLOBAL HEALTH (DART 2021) | 2021年 / 12968卷
关键词
Mammogram; Mammography positioning; Breast cancer; Deep learning; MQSA; SCREENING MAMMOGRAPHY; DIGITAL MAMMOGRAPHY; CANCERS;
D O I
10.1007/978-3-030-87722-4_22
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Screening mammograms are a routine imaging exam performed to detect breast cancer in its early stages to reduce morbidity and mortality attributed to this disease. In the United States alone, approximately 40 million mammograms are performed each year. In order to maximize the efficacy of breast cancer screening programs proper mammographic positioning is paramount. Proper positioning ensures adequate visualization of breast tissue and is necessary for breast cancer detection. Therefore, breast imaging radiologists must assess each mammogram for the adequacy of positioning before providing a final interpretation of the exam. In this paper we propose a method that mimics and automates the decision-making process performed by breast imaging radiologists to identify adequately positioned mammograms. Our objective is to improve the quality of mammographic positioning and performance, and ultimately reduce repeat visits for patients whose imaging is technically inadequate. If the method is not able to identify the adequately positioned mammogram, the patient will be scanned again. This AI driven method will be useful in reducing the cost and anxiety associated with mammogram scanning. The method can be very useful in serving the needs in developing countries, where mammogram scanning is not considered a routine procedure due to increased cost to the patient. In addition, the methodology can also be used for training the mammogram techs by providing actionable feedback during scan. The proposed method has a true positive rate of 91.4% for detecting a correctly positioned mediolateral oblique view. For detecting a correctly positioned craniocaudal view, the true positive rate is 95.11%.
引用
收藏
页码:239 / 250
页数:12
相关论文
共 50 条
  • [21] Automatic Lumbar MRI Detection and Identification Based on Deep Learning
    Zhou, Yujing
    Liu, Yuan
    Chen, Qian
    Gu, Guohua
    Sui, Xiubao
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (03) : 513 - 520
  • [22] Automatic Object Detection of Loess Landslide Based on Deep Learning
    Ju Y.
    Xu Q.
    Jin S.
    Li W.
    Dong X.
    Guo Q.
    Xu, Qiang (xq@cdut.edu.cn), 1747, Editorial Board of Medical Journal of Wuhan University (45): : 1747 - 1755
  • [23] Dual-View Deep Learning Model for Accurate Breast Cancer Detection in Mammograms
    Shah, Dilawar
    Khan, Mohammad Asmat Ullah
    Abrar, Mohammad
    Tahir, Muhammad
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2025, 2025 (01)
  • [24] Research on Automatic Microalgae Detection System Based on Deep Learning
    Xiang, Rui-Jie
    Liu, Hao
    Lu, Zhen
    Xiao, Ze-Yu
    Liu, Hai-Peng
    Wang, Yin-Chu
    Peng, Xiao
    Yan, Wei
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2024, 51 (01) : 177 - 189
  • [25] Detecting and classifying lesions in mammograms with Deep Learning
    Ribli, Dezso
    Horvath, Anna
    Unger, Zsuzsa
    Pollner, Peter
    Csabai, Istvan
    SCIENTIFIC REPORTS, 2018, 8
  • [26] Automated Breast Cancer Detection in Digital Mammograms of Various Densities via Deep Learning
    Suh, Yong Joon
    Jung, Jaewon
    Cho, Bum-Joo
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 11
  • [27] Detection of abnormalities in mammograms using deep features
    Tavakoli, Nasrin
    Karimi, Maryam
    Norouzi, Alireza
    Karimi, Nader
    Samavi, Shadrokh
    Soroushmehr, S. M. Reza
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 14 (5) : 5355 - 5367
  • [28] Deep Learning Based Automatic Grape Downy Mildew Detection
    Zhang, Zhao
    Qiao, Yongliang
    Guo, Yangyang
    He, Dongjian
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [29] Detection of abnormalities in mammograms using deep features
    Nasrin Tavakoli
    Maryam Karimi
    Alireza Norouzi
    Nader Karimi
    Shadrokh Samavi
    S. M. Reza Soroushmehr
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 5355 - 5367
  • [30] Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system
    Al-masni, Mohammed A.
    Al-antari, Mugahed A.
    Park, Jeong-Min
    Gi, Geon
    Kim, Tae-Yeon
    Rivera, Patricio
    Valarezo, Edwin
    Choi, Mun-Taek
    Han, Seung-Moo
    Kim, Tae-Seong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 157 : 85 - 94