Cores for piecewise-deterministic Markov processes used in Markov chain Monte Carlo

被引:1
|
作者
Holderrieth, Peter [1 ]
机构
[1] Univ Oxford, Oxford, England
关键词
Feller process; piecewise-deterministic Markov process; Markov chain Monte Carlo; Markov semigroup; cores; Bouncy Particle Sampler; Randomized Hamiltonian Monte Carlo;
D O I
10.1214/21-ECP430
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show fundamental properties of the Markov semigroup of recently proposed MCMC algorithms based on Piecewise-deterministic Markov processes (PDMPs) such as the Bouncy Particle Sampler, the Zig-Zag process or the Randomized Hamiltonian Monte Carlo method. Under assumptions typically satisfied in MCMC settings, we prove that PDMPs are Feller and that their generator admits the space of infinitely differentiable functions with compact support as a core. As we illustrate via martingale problems and a simplified proof of the invariance of target distributions, these results provide a fundamental tool for the rigorous analysis of these algorithms and corresponding stochastic processes.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Qualitative properties of certain piecewise deterministic Markov processes
    Benaim, Michel
    Le Borgne, Stephane
    Malrieu, Florent
    Zitt, Pierre-Andre
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 1040 - 1075
  • [32] Adaptive average control for piecewise deterministic Markov processes
    Costa, O. L. V.
    Dufour, F.
    Genadot, A.
    SYSTEMS & CONTROL LETTERS, 2024, 192
  • [33] Approximation methods for piecewise deterministic Markov processes and their costs
    Kritzer, Peter
    Leobacher, Gunther
    Szoelgyenyi, Michaela
    Thonhauser, Stefan
    SCANDINAVIAN ACTUARIAL JOURNAL, 2019, (04) : 308 - 335
  • [34] Polynomial Convergence Rates of Piecewise Deterministic Markov Processes
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (01)
  • [35] Substochastic semigroups and densities of piecewise deterministic Markov processes
    Tyran-Kaminska, Marta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) : 385 - 402
  • [36] Polynomial Convergence Rates of Piecewise Deterministic Markov Processes
    Gareth O. Roberts
    Jeffrey S. Rosenthal
    Methodology and Computing in Applied Probability, 2023, 25
  • [37] MINIMUM CONTRAST ESTIMATORS FOR PIECEWISE DETERMINISTIC MARKOV PROCESSES
    Dufour, F.
    Genadot, A.
    Costa, O. L. V.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2025, 15 (01): : 1 - 14
  • [38] Optimal impulsive control of piecewise deterministic Markov processes
    Dufour, F.
    Horiguchi, M.
    Piunovskiy, A. B.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (07): : 1073 - 1098
  • [39] Exponential ergodicity in the bounded-Lipschitz distance for some piecewise-deterministic Markov processes with random switching between flows
    Czapla, Dawid
    Horbacz, Katarzyna
    Wojewodka-Sciazko, Hanna
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 215
  • [40] Convergence Diagnostics for Markov Chain Monte Carlo
    Roy, Vivekananda
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 7, 2020, 2020, 7 : 387 - 412