PLANE WAVE DISCONTINUOUS GALERKIN METHODS FOR THE 2D HELMHOLTZ EQUATION: ANALYSIS OF THE p-VERSION

被引:136
作者
Hiptmair, R. [1 ]
Moiola, A. [1 ]
Perugia, I. [2 ]
机构
[1] ETH, SAM, CH-8092 Zurich, Switzerland
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
Helmholtz equation; wave propagation; discontinuous Galerkin methods; plane waves; p-version error analysis; duality estimates; WEAK VARIATIONAL FORMULATION; LAGRANGE MULTIPLIERS; ELEMENT METHODS;
D O I
10.1137/090761057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator -Delta-w(2), w > 0. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Despres, SIAM J. Numer. Anal., 35 (1998), pp. 255-299]. This paper is concerned with the a priori convergence analysis of PWDG in the case of p-refinement, that is, the study of the asymptotic behavior of relevant error norms as the number of plane wave directions in the local trial spaces is increased. For convex domains in two space dimensions, we derive convergence rates, employing mesh skeleton-based norms, duality techniques from [P. Monk and D. Wang, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121-136], and plane wave approximation theory.
引用
收藏
页码:264 / 284
页数:21
相关论文
共 33 条
[1]   Discrete dispersion relation for hp-version finite element approximation at high wave number [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :553-575
[2]   Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods [J].
Ainsworth, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (01) :106-130
[3]   Dispersive properties of high-order Nedelec/edge element approximation of the time-harmonic Maxwell equations [J].
Ainsworth, M .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1816) :471-491
[4]   CONVERGENCE ANALYSIS OF A DISCONTINUOUS GALERKIN METHOD WITH PLANE WAVES AND LAGRANGE MULTIPLIERS FOR THE SOLUTION OF HELMHOLTZ PROBLEMS [J].
Amara, Mohamed ;
Djellouli, Rabia ;
Farhat, Charbel .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1038-1066
[5]  
[Anonymous], 2002, MATH THEORY FINITE E, DOI DOI 10.1007/978-1-4757-3658-8
[6]  
[Anonymous], 1985, MONOGR STUD MATH
[7]   THE P AND H-P VERSIONS OF THE FINITE-ELEMENT METHOD, BASIC PRINCIPLES AND PROPERTIES [J].
BABUSKA, I ;
SURI, M .
SIAM REVIEW, 1994, 36 (04) :578-632
[8]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[9]  
2-N
[10]  
Babuska IM, 2000, SIAM REV, V42, P451