UNKNOWN INPUT ESTIMATION FOR NONLINEAR SYSTEMS USING SLIDING MODE OBSERVERS AND SMOOTH WINDOW FUNCTIONS

被引:10
作者
Chakrabarty, Ankush [1 ]
Rundell, Ann E. [2 ]
Zak, Stanislaw H. [3 ]
Zhu, Fanglai [4 ]
Buzzard, Gregery T. [5 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[2] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[4] Tongji Univ, Coll Elect & Informat Engn, Shanghai, Peoples R China
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
unknown input observers; low-pass filtering; incremental quadratic constraints; sliding mode; descriptor systems; multiplier matrix; linear matrix inequalities; UNOBSERVABLE DESCRIPTOR SYSTEMS; ROBUST FAULT RECONSTRUCTION; STATE ESTIMATION; MULTIVARIABLE SYSTEMS; LIPSCHITZ SYSTEMS; SENSOR FAULTS; DESIGN; CONTROLLERS; DIAGNOSIS; ACTUATOR;
D O I
10.1137/16M1078793
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While sliding mode observers (SMOs) using discontinuous relays are widely analyzed, most SMOs are implemented computationally using a continuous approximation of the discontinuous relays. This results in the formation of a boundary layer in a neighborhood of the sliding manifold in the observer error space. In this paper, a convex programming method for constructing boundary-layer SMOs (BL-SMOs) is presented for a wide class of nonlinear systems characterized by incremental quadratic constraints. Specifically, the observer gains are computed by solving a set of linear matrix inequalities and ultimate bounds on the state of a synthetic descriptor system. A novel application of filtering using smooth window functions is leveraged to reconstruct the unknown exogenous inputs to prescribed accuracy. Two numerical examples are presented to illustrate the effectiveness of our proposed approach.
引用
收藏
页码:3619 / 3641
页数:23
相关论文
共 49 条
[1]   Observers for systems with nonlinearities satisfying incremental quadratic constraints [J].
Acikmese, Behcet ;
Corless, Martin .
AUTOMATICA, 2011, 47 (07) :1339-1348
[2]  
[Anonymous], 2013, Numer. Algebr. Control Optim, DOI [DOI 10.3934/NACO.2013.3.175, 10.3934/naco.2013.3.175]
[3]  
Aronszajn N., 1956, Pacific J. Math., V6, P405
[4]   A NEW CLASS OF STABILIZING CONTROLLERS FOR UNCERTAIN DYNAMICAL-SYSTEMS [J].
BARMISH, BR ;
CORLESS, M ;
LEITMANN, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (02) :246-255
[5]   State and unknown input observers for nonlinear systems with delayed measurements [J].
Chakrabarty, Ankush ;
Fridman, Emilia ;
Zak, Stanislaw H. ;
Buzzard, Gregery T. .
AUTOMATICA, 2018, 95 :246-253
[6]   State and Unknown Input Observers for Nonlinear Systems With Bounded Exogenous Inputs [J].
Chakrabarty, Ankush ;
Corless, Martin J. ;
Buzzard, Gregery T. ;
Zak, Stanislaw H. ;
Rundell, Ann E. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (11) :5497-5510
[7]  
Chakrabarty A, 2014, IEEE ENG MED BIO, P3426, DOI 10.1109/EMBC.2014.6944359
[8]   Robust fault reconstruction for a class of infinitely unobservable descriptor systems [J].
Chan, Joseph Chang Lun ;
Tan, Chee Pin ;
Trinh, Hieu .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (08) :1646-1655
[9]  
Chen J, 2012, ROBUST MODEL BASED F
[10]   PROPERTIES OF MATRICES USED IN UNCERTAIN LINEAR-CONTROL SYSTEMS [J].
CHOUINARD, LG ;
DAUER, JP ;
LEITMANN, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (03) :381-389