Combination of multiple bipartite ranking for multipartite web content quality evaluation

被引:4
作者
Jin, Xiao-Bo [1 ]
Geng, Guang-Gang [2 ]
Sun, Minghe [3 ]
Zhang, Dexian [1 ]
机构
[1] Henan Univ Technol, Sch Informat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
[3] Univ Texas San Antonio, Coll Business, San Antonio, TX 78249 USA
基金
中国国家自然科学基金;
关键词
Web content quality evaluation; Multipartite ranking; Bipartite ranking; Encoding design; Decoding design;
D O I
10.1016/j.neucom.2014.08.067
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Web content quality evaluation is crucial to various web content processing applications. Bagging has a powerful classification capacity by combining multiple classifiers. In this study, similar to Bagging, multiple pairwise bipartite ranking learners are combined to solve the multipartite ranking problems for web content quality evaluation. Both encoding and decoding mechanisms are used to combine bipartite rankers to form a multipartite ranker and, hence, the multipartite ranker is called MultiRank.ED. Both binary encoding and ternary encoding extend each rank value to an L-1 dimensional vector for a ranking problem with L different rank values. Predefined weighting and adaptive weighting decoding mechanisms are used to combine the ranking results of bipartite rankers to obtain the final ranking results. In addition, some theoretical analyses of the encoding and the decoding strategies in the MultiRank.ED algorithm are provided. Computational experiments using the DC2010 datasets show that the combination of binary encoding and predefined weighting decoding yields the best performance in all four combinations. Furthermore, this combination performs better than the best winning method of the DC2010 competition. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1305 / 1314
页数:10
相关论文
共 38 条
  • [1] Abu-Nimeh S., 2007, P ANT WORK GROUPS 2, P60, DOI DOI 10.1145/1299015.1299021
  • [2] Reducing multiclass to binary: A unifying approach for margin classifiers
    Allwein, EL
    Schapire, RE
    Singer, Y
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (02) : 113 - 141
  • [3] [Anonymous], 2002, P ACM SIGKDD KDD 200, DOI 10.1145/775047.775067
  • [4] [Anonymous], P 14 INT C MACH LEAR
  • [5] [Anonymous], 2006, Pattern recognition and machine learning
  • [6] Becchetti L, 2006, P WORKSH WEB MIN WEB
  • [7] Benczur A.A., 2010, ECML PKDD 2010 DISC
  • [8] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [9] Burges Chris, 2005, P 22 INT C MACHINE L, P89, DOI DOI 10.1145/1102351.1102363
  • [10] Cao Z., 2007, P 24 INT C MACH LEAR, P129, DOI DOI 10.1145/1273496.1273513