MONTE CARLO SIMULATION OF FLUORESCENCE CORRELATION SPECTROSCOPY DATA

被引:3
|
作者
Kosovan, Peter [1 ]
Uhlik, Filip [1 ]
Kuldova, Jitka [1 ]
Stepanek, Miroslav [1 ]
Limpouchova, Zuzana [1 ]
Prochazka, Karel [1 ]
Benda, Ales [2 ]
Humpolickova, Jana [2 ]
Hof, Martin [2 ]
机构
[1] Charles Univ Prague, Fac Sci, Dept Phys & Macromol Chem, Prague 12843 2, Czech Republic
[2] Acad Sci Czech Republic, J Heyrovsky Inst Phys Chem, VVI, Prague 8, Czech Republic
关键词
Diffusion coefficient; Dynamic light scattering; Fluorescence spectroscopy; Monte Carlo method; Rotational diffusion; Translational diffusion; ATOMIC-FORCE MICROSCOPY; LIGHT-SCATTERING; BEHAVIOR; MICELLES; BINDING;
D O I
10.1135/cccc2009526
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We employed the Monte Carlo simulation methodology to emulate the diffusion of fluorescently labeled particles and understand the source of differences between values of diffusion coefficients (and consequently hydrodynamic radii) of fluorescently labeled nanoparticles measured by fluorescence correlation spectroscopy (FCS) and dynamic light scattering (DLS). We used the simulation program developed in our laboratory and studied the diffusion of spherical particles of different sizes, which are labeled on their surface. In this study, we focused on two complicating effects: (i) multiple labeling and (ii) rotational diffusion which affect the fluorescence signal from large particles and hinder the analysis of autocorrelation functions according to simple analytical models. We have shown that the fluorescence fluctuations can be well fitted using the analytical model for small point-like particles, but the obtained parameters deviate in some cases significantly from the real ones. It means that the current data treatment yields apparent values of diffusion coefficients and other parameters only and the interpretation of experimental results for systems of particles with sizes comparable to the size of the active illuminated volume requires great care and precaution.
引用
收藏
页码:207 / 222
页数:16
相关论文
共 50 条
  • [41] Direct simulation Monte Carlo simulation of thermal fluctuations in gases
    Bruno, Domenico
    PHYSICS OF FLUIDS, 2019, 31 (04)
  • [42] MONTE-CARLO SIMULATION OF LIGHT SCATTERING IN FRACTAL POROUS MEDIA
    Belyi, V. N.
    Malevich, V. L.
    Shraiber, Yu.
    Khilo, N. A.
    JOURNAL OF APPLIED SPECTROSCOPY, 2008, 75 (02) : 199 - 202
  • [43] Monte-Carlo simulation of light scattering in fractal porous media
    V. N. Belyi
    V. L. Malevich
    Yu. Shraiber
    N. A. Khilo
    Journal of Applied Spectroscopy, 2008, 75 : 199 - 202
  • [44] Mechanisms of Nanowhisker Formation: Monte Carlo Simulation
    Nastovjak, A. G.
    Neizvestny, I. G.
    Shwartz, N. L.
    Sheremet, E. S.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2009, 45 (04) : 342 - 347
  • [45] The Monte Carlo method and the multiagent system simulation
    Martins Ferreira, Ricardo Poley
    ABAKOS, 2012, 1 (01): : 89 - 99
  • [46] A MONTE-CARLO METHOD FOR ESTIMATING THE CORRELATION EXPONENT
    MIKOSCH, T
    WANG, QA
    JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (3-4) : 799 - 813
  • [47] Systematic evaluation of fluorescence correlation spectroscopy data analysis on the nanosecond time scale
    Steger, Katrin
    Bollmann, Stefan
    Noe, Frank
    Doose, Soeren
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (25) : 10435 - 10445
  • [48] Numerical simulation of near-field fluorescence correlation spectroscopy using a fiber probe
    Kasahara, Kazuo
    Saiki, Toshiharu
    JOURNAL OF NANOPHOTONICS, 2010, 4
  • [49] PRECISION OF HEMODIALYSIS UREA KINETIC MODELING - EMPIRICAL-DATA AND MONTE-CARLO SIMULATION
    BUUR, T
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 1991, 35 (01) : 25 - 34
  • [50] Fluorescence Correlation Spectroscopy of Gold Nanoparticles
    Balaji, P. Sri
    Murthy, A. V. R.
    Tiwari, Neha
    Kulkarni, Sulabha
    SPECTROSCOPY LETTERS, 2012, 45 (01) : 22 - 28