Resource Allocation in Multi-cell NOMA Systems with Multi-Agent Deep Reinforcement Learning

被引:1
|
作者
Wang, Shichao [1 ]
Wang, Xiaoming [1 ,2 ]
Zhang, Yuhan [1 ]
Xu, Youyun [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Natl Engn Res Ctr Commun & Networking, Nanjing 210003, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
NOMA; resource allocation; multi-cell; multi-agent deep reinforcement learning;
D O I
10.1109/WCNC49053.2021.9417580
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Non-orthogonal multiple access (NOMA) technology can meet user access requirements and improve system capacity. In this paper, we investigate the joint subcarrier assignment and power allocation problem in an uplink multi-cell NOMA system to maximize the energy efficiency (EE) while ensuring the minimum data rate of all users. We propose a multi-agent deep reinforcement learning (MADRL) method with centralized training and distributed execution to solve this dynamic optimization problem. In our method, we design a deep q-network (DQN) with parameter sharing to generate the subcarrier assignment policy, and use multi-agent deep deterministic policy gradient (MADDPG) network for power allocation of NOMA user. Finally, we adjust the entire resource allocation policy by updating the parameters of neural networks according to the reward. The simulation shows that our method has better and more stable sum EE than centralized and distributed methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep multi-agent reinforcement learning for resource allocation in NOMA-enabled MEC
    Waqar, Noor
    Hassan, Syed Ali
    Pervaiz, Haris
    Jung, Haejoon
    Dev, Kapal
    COMPUTER COMMUNICATIONS, 2022, 196 : 1 - 8
  • [2] Multi-Agent Deep Reinforcement Learning for Uplink Power Control in Multi-Cell Systems
    Jia, Ruibao
    Liu, Liu
    Zheng, Xufei
    Yang, Yuhan
    Wang, Shaoyang
    Huang, Pingmu
    Lv, Tiejun
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 324 - 330
  • [3] Energy Efficient Resource Allocation Approach for Uplink NOMA Multi-Cell Systems Based on Multi-Agent DRL
    Rabee, Ayman
    Barhumi, Imad
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [4] Resource Allocation in Uplink NOMA Systems: A Hybrid-Decision-Based Multi-Agent Deep Reinforcement Learning Approach
    Xie, Xianzhong
    Li, Min
    Shi, Zhaoyuan
    Yang, Helin
    Huang, Qian
    Xiong, Zehui
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 16760 - 16765
  • [5] Multi-Agent Deep Reinforcement Learning Based Distributed Resource Allocation
    Urmonov, Odilbek
    Kim, HyungWon
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [6] Multi-Agent Deep Reinforcement Learning for Resource Allocation in the Multi-Objective HetNet
    Nie, Hongrui
    Li, Shaosheng
    Liu, Yong
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 116 - 121
  • [7] Task Offloading and Resource Allocation in NOMA-VEC: A Multi-Agent Deep Graph Reinforcement Learning Algorithm
    Hu, Yonghui
    Jin, Zuodong
    Qi, Peng
    Tao, Dan
    CHINA COMMUNICATIONS, 2024, 21 (08) : 79 - 88
  • [8] Task Offloading and Resource Allocation in NOMA-VEC: A Multi-Agent Deep Graph Reinforcement Learning Algorithm
    Hu Yonghui
    Jin Zuodong
    Qi Peng
    Tao Dan
    China Communications, 2024, 21 (08) : 79 - 88
  • [9] Multi-Agent Deep Reinforcement Learning to Enable Dynamic TDD in a Multi-Cell Environment
    Boutiba, Karim
    Bagaa, Miloud
    Ksentini, Adlen
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 6163 - 6177
  • [10] Beamforming and Resource Allocation in Multi-cell OFDMA Systems based on Deep Transfer Reinforcement Learning
    Sun, Gaoxiang
    Wang, Xiaoming
    iang, Rui
    Xu, Youyun
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,