On the system of rational difference equations xn=A+yn-1/xn-pyn-q, yn=A+xn-1/xn-ryn-s

被引:31
作者
Yang, XF [1 ]
机构
[1] Chongqing Univ, Dept Comp Sci & Technol, Chongqing 400044, Peoples R China
关键词
difference equation; boundedness; global asymptotic stability;
D O I
10.1016/j.jmaa.2004.10.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the behavior of positive solutions of the system of difference equations x(n) = A + y(n-1)/x(n-p)y(n-q), y(n) = A + xn-1/x(n-r)y(n-s), n = 1, 2, ..., where p ≥ 2, q ≥ 2, r ≥ 2, s ≥ 2, A is a positive constant, and x(1)-max{p,r}, x(2)-max{p,r},..., x(0), y(1)-max{q,s}, y(2)-max{q,s},..., y(0) are positive real numbers. © 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 5 条
[1]  
[Anonymous], 2001, COMMUN APPL NONLINEA
[2]   On the positive solutions of the difference equation system Xn+1=1/yn, Yn+1=Yn/xn-1Yn-1 [J].
Çinar, C .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (02) :303-305
[3]   A coupled system of rational difference equations [J].
Clark, D ;
Kulenovic, MRS .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (6-7) :849-867
[4]   Global asymptotic behavior of a two-dimensional difference equation modelling competition [J].
Clark, D ;
Kulenovic, MRS ;
Selgrade, JF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (07) :1765-1776
[5]   On a system of two nonlinear difference equations [J].
Papaschinopoulos, G ;
Schinas, CJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 219 (02) :415-426