The maximum entropy principle and the stochastic aspects of deterministic chaos

被引:0
作者
del Rio-Correa, JL [1 ]
Garcia-Colin, LS [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340 13, DF, Mexico
来源
PHYSICA A | 1998年 / 258卷 / 1-2期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the evolution equation for the coarse-grained distribution associated with the Perron-Frobenius equation, analyzing the conditions under which it reduces to a Chapman-Kolmogorov equation. This is achieved using two methods, one of them due to G. Nicolis and C. Nicolis in terms of two assumptions, and another one using information theory concepts such as the maximum entropy principle and the principle of operational compatibility. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 12 条
[1]  
[Anonymous], 1968, An introduction to probability theory and its applications
[2]  
Beck C., 1993, THERMODYNAMICS CHAOT
[3]   MARKOV EVOLUTION AND H-THEOREM UNDER FINITE COARSE GRAINING IN CONSERVATIVE DYNAMICAL-SYSTEMS [J].
COURBAGE, M ;
NICOLIS, G .
EUROPHYSICS LETTERS, 1990, 11 (01) :1-6
[4]   CONCEPT OF ENTROPY FOR NONEQUILIBRIUM STATES OF CLOSED MANY-BODY SYSTEMS [J].
DELRIOCORREA, JL ;
GARCIACOLIN, LS .
PHYSICAL REVIEW A, 1991, 43 (12) :6657-6663
[5]   The principle of observational compatibility [J].
delRioCorrea, JL ;
GarciaColin, LS .
PHYSICA A, 1997, 241 (3-4) :518-534
[6]   INCREASE-IN-ENTROPY LAW [J].
DELRIOCORREA, JL ;
GARCIACOLIN, LS .
PHYSICAL REVIEW E, 1993, 48 (02) :819-828
[7]  
DELRIOCORREA JL, 1995, TOPICS THEORETICAL P, P416
[8]  
Lasota A., 1994, Applied Mathematical Sciences, V2nd
[9]  
Nicolis G., 1991, Chaos, Solitons and Fractals, V1, P25, DOI 10.1016/0960-0779(91)90053-C
[10]   MASTER-EQUATION APPROACH TO DETERMINISTIC CHAOS [J].
NICOLIS, G ;
NICOLIS, C .
PHYSICAL REVIEW A, 1988, 38 (01) :427-433