Exact solutions of nonlinear conformally invariant integral equations in R3

被引:48
作者
Xu, XW [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
关键词
exact solution; conformally invariant integral equation; method of moving spheres;
D O I
10.1016/j.aim.2004.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will study the entire positive C-4 solutions of the geometrically interesting integral equation: u(x) = 1/8 pi integral(3)(R) vertical bar x -y vertical bar u(-q)(y)dy with 0 < q in R-3. We will show that there are positive entire solutions which take the form u(x) = c(1+vertical bar x vertical bar(2))(1/2) up to dilation and translations, only when q = 7. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:485 / 503
页数:19
相关论文
共 25 条
[1]   Self-similar solutions for the anisotropic affine curve shortening problem [J].
Ai, J ;
Chou, KS ;
Wei, JC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (03) :311-337
[2]   ESTIMATES AND EXTREMALS FOR ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
BRANSON, TP ;
CHANG, SYA ;
YANG, PC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :241-262
[3]   GROUP-REPRESENTATIONS ARISING FROM LORENTZ CONFORMAL GEOMETRY [J].
BRANSON, TP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (02) :199-291
[4]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[5]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[6]   EXTREMAL METRICS OF ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
CHANG, SYA ;
YANG, PC .
ANNALS OF MATHEMATICS, 1995, 142 (01) :171-212
[7]  
Chang SYA, 1997, MATH RES LETT, V4, P91
[8]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[9]  
CHOI YS, 1999, NONLINEAR BIHARMONIC
[10]  
FEFFERMAN C, 1985, GRAHAM CONFORMAL INV, P95