The impact of site-specific digital histology signatures on deep learning model accuracy and bias

被引:139
作者
Howard, Frederick M. [1 ]
Dolezal, James [1 ]
Kochanny, Sara [1 ]
Schulte, Jefree [2 ]
Chen, Heather [2 ]
Heij, Lara [3 ,4 ]
Huo, Dezheng [5 ,6 ]
Nanda, Rita [1 ,6 ]
Olopade, Olufunmilayo I. [1 ,6 ]
Kather, Jakob N. [7 ,8 ,9 ]
Cipriani, Nicole [2 ,6 ]
Grossman, Robert L. [1 ,6 ]
Pearson, Alexander T. [1 ,6 ]
机构
[1] Univ Chicago, Dept Med, Sect Hematol Oncol, 5841 S Maryland Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Pathol, 5841 S Maryland Ave, Chicago, IL 60637 USA
[3] Univ Hosp RWTH Aachen, Dept Surg & Transplantat, Aachen, Germany
[4] Univ Hosp RWTH Aachen, Inst Pathol, Aachen, Germany
[5] Univ Chicago, Dept Publ Hlth Sci, Chicago, IL 60637 USA
[6] Univ Chicago Comprehens Canc Ctr, Chicago, IL USA
[7] Univ Hosp RWTH Aachen, Dept Med 3, Aachen, Germany
[8] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, W Yorkshire, England
[9] Univ Heidelberg Hosp, Natl Ctr Tumor Dis, Med Oncol, Heidelberg, Germany
关键词
COMPREHENSIVE GENOMIC CHARACTERIZATION; OPERATING CHARACTERISTIC CURVES; BREAST-CANCER; MITOSIS DETECTION; HEALTH-CARE; HISTOPATHOLOGY; ANCESTRY; RESOURCE; BIOLOGY; AREAS;
D O I
10.1038/s41467-021-24698-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital histology. Deep learning (DL) models have been trained on TCGA to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. However, we demonstrate that these features vary substantially across tissue submitting sites in TCGA for over 3,000 patients with six cancer subtypes. Additionally, we show that histologic image differences between submitting sites can easily be identified with DL. Site detection remains possible despite commonly used color normalization and augmentation methods, and we quantify the image characteristics constituting this site-specific digital histology signature. We demonstrate that these site-specific signatures lead to biased accuracy for prediction of features including survival, genomic mutations, and tumor stage. Furthermore, ethnicity can also be inferred from site-specific signatures, which must be accounted for to ensure equitable application of DL. These site-specific signatures can lead to overoptimistic estimates of model performance, and we propose a quadratic programming method that abrogates this bias by ensuring models are not trained and validated on samples from the same site. Deep learning models have been trained on The Cancer Genome Atlas to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. Here, the authors demonstrate that site-specific histologic signatures can lead to biased estimates of accuracy for such models, and propose a method to minimize such bias.
引用
收藏
页数:13
相关论文
共 81 条
[41]   Population Differences in Breast Cancer: Survey in Indigenous African Women Reveals Over-Representation of Triple-Negative Breast Cancer [J].
Huo, Dezheng ;
Ikpatt, Francis ;
Khramtsov, Andrey ;
Dangou, Jean-Marie ;
Nanda, Rita ;
Dignam, James ;
Zhang, Bifeng ;
Grushko, Tatyana ;
Zhang, Chunling ;
Oluwasola, Olayiwola ;
Malaka, David ;
Malami, Sani ;
Odetunde, Abayomi ;
Adeoye, Adewumi O. ;
Iyare, Festus ;
Falusi, Adeyinka ;
Perou, Charles M. ;
Olopade, Olufunmilayo I. .
JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (27) :4515-4521
[42]  
IBM, 2017, IBM ILOG CPLEX 12 10
[43]   Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours [J].
Iizuka, Osamu ;
Kanavati, Fahdi ;
Kato, Kei ;
Rambeau, Michael ;
Arihiro, Koji ;
Tsuneki, Masayuki .
SCIENTIFIC REPORTS, 2020, 10 (01)
[44]   Proliferation in African breast cancer: Biology and prognostication in Nigerian breast cancer material [J].
Ikpatt, OF ;
Kuopio, T ;
Collan, Y .
MODERN PATHOLOGY, 2002, 15 (08) :783-789
[45]   A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival [J].
Jaber, Mustafa I. ;
Song, Bing ;
Taylor, Clive ;
Vaske, Charles J. ;
Benz, Stephen C. ;
Rabizadeh, Shahrooz ;
Soon-Shiong, Patrick ;
Szeto, Christopher W. .
BREAST CANCER RESEARCH, 2020, 22 (01)
[46]   A machine learning-based prognostic predictor for stage III colon cancer [J].
Jiang, Dan ;
Liao, Junhua ;
Duan, Haihan ;
Wu, Qingbin ;
Owen, Gemma ;
Shu, Chang ;
Chen, Liangyin ;
He, Yanjun ;
Wu, Ziqian ;
He, Du ;
Zhang, Wenyan ;
Wang, Ziqiang .
SCIENTIFIC REPORTS, 2020, 10 (01)
[47]   Pan-cancer image-based detection of clinically actionable genetic alterations [J].
Kather, Jakob Nikolas ;
Heij, Lara R. ;
Grabsch, Heike I. ;
Loeffler, Chiara ;
Echle, Amelie ;
Muti, Hannah Sophie ;
Krause, Jeremias ;
Niehues, Jan M. ;
Sommer, Kai A. J. ;
Bankhead, Peter ;
Kooreman, Loes F. S. ;
Schulte, Jefree J. ;
Cipriani, Nicole A. ;
Buelow, Roman D. ;
Boor, Peter ;
Ortiz-Bruechle, Nadina ;
Hanby, Andrew M. ;
Speirs, Valerie ;
Kochanny, Sara ;
Patnaik, Akash ;
Srisuwananukorn, Andrew ;
Brenner, Hermann ;
Hoffmeister, Michael ;
van den Brandt, Piet A. ;
Jaeger, Dirk ;
Trautwein, Christian ;
Pearson, Alexander T. ;
Luedde, Tom .
NATURE CANCER, 2020, 1 (08) :789-+
[48]   Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer [J].
Kather, Jakob Nikolas ;
Pearson, Alexander T. ;
Halama, Niels ;
Jaeger, Dirk ;
Krause, Jeremias ;
Loosen, Sven H. ;
Marx, Alexander ;
Boor, Peter ;
Tacke, Frank ;
Neumann, Ulf Peter ;
Grabsch, Heike I. ;
Yoshikawa, Takaki ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Trautwein, Christian ;
Luedde, Tom .
NATURE MEDICINE, 2019, 25 (07) :1054-+
[49]   Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study [J].
Kather, Jakob Nikolas ;
Krisam, Johannes ;
Charoentong, Pornpimol ;
Luedde, Tom ;
Herpel, Esther ;
Weis, Cleo-Aron ;
Gaiser, Timo ;
Marx, Alexander ;
Valous, Nektarios A. ;
Ferber, Dyke ;
Jansen, Lina ;
Reyes-Aldasoro, Constantino Carlos ;
Zoernig, Inka ;
Jaeger, Dirk ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Halama, Niels .
PLOS MEDICINE, 2019, 16 (01)
[50]  
Kather JN., 2019, DEEP LEARNING DETECT, DOI 10.1101/690206