In situ observation of the impact of surface oxidation on the crystallization mechanism of GeTe phase-change thin films by scanning transmission electron microscopy

被引:36
|
作者
Berthier, R. [1 ,2 ]
Bernier, N. [1 ,2 ]
Cooper, D. [1 ,2 ]
Sabbione, C. [1 ,2 ]
Hippert, F. [3 ]
Noe, P. [1 ,2 ]
机构
[1] Univ Grenoble Alpes, F-38000 Grenoble, France
[2] CEA, LETI, MINATEC Campus, F-38054 Grenoble 9, France
[3] Univ Grenoble Alpes, UPS, INSA, CNRS,LNCMI, F-38042 Grenoble 9, France
关键词
D O I
10.1063/1.5002637
中图分类号
O59 [应用物理学];
学科分类号
摘要
The crystallization mechanisms of prototypical GeTe phase-change material thin films have been investigated by in situ scanning transmission electron microscopy annealing experiments. A novel sample preparation method has been developed to improve sample quality and stability during in situ annealing, enabling quantitative analysis and live recording of phase change events. Results show that for an uncapped 100 nm thick GeTe layer, exposure to air after fabrication leads to composition changes which promote heterogeneous nucleation at the oxidized surface. We also demonstrate that protecting the GeTe layer with a 10 nm SiN capping layer prevents nucleation at the surface and allows volume nucleation at a temperature 50 degrees C higher than the onset of crystallization in the oxidized sample. Our results have important implications regarding the integration of these materials in confined memory cells. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] In Situ Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory
    Meister, Stefan
    Kim, SangBum
    Cha, Judy J.
    Wong, H-S Philip
    Cui, Yi
    ACS NANO, 2011, 5 (04) : 2742 - 2748
  • [2] Understanding the Crystallization Behavior of Surface-Oxidized GeTe Thin Films for Phase-Change Memory Application
    Kolb, Andrea N. D.
    Bernier, Nicolas
    Robin, Eric
    Benayad, Anass
    Rouviere, Jean-Luc
    Sabbione, Chiara
    Hippert, Francoise
    Noe, Pierre
    ACS APPLIED ELECTRONIC MATERIALS, 2019, 1 (05) : 701 - 710
  • [3] Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition
    Sun, Xinxing
    Thelander, Erik
    Gerlach, Juergen W.
    Decker, Ulrich
    Rauschenbach, Bernd
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (29)
  • [4] In situ transmission electron microscopy analysis of electron beam induced crystallization of amorphous marks in phase-change materials
    Kaiser, M
    van Pieterson, L
    Verheijen, MA
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (06) : 3193 - 3198
  • [5] In situ transmission electron microscopy study on the crystallization of GeTe binary alloy
    Kim, Eun Tae
    Lee, Jeong Yong
    Kim, Yong Tae
    APPLIED PHYSICS LETTERS, 2008, 92 (19)
  • [6] Creating phase-change memory devices with GeTe thin films
    Vitiello, Julien
    SOLID STATE TECHNOLOGY, 2011, 54 (10) : 18 - 20
  • [7] Crystallization of GeTe phase change thin films grown by pulsed electron-beam deposition
    Bathaei, Neda
    Weng, Binbin
    Sigmarsson, Hjalti
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 148
  • [8] Crystallization study of "melt quenched" amorphous GeTe by transmission electron microscopy for phase change memory applications
    Bastard, A.
    Bastien, J. C.
    Hyot, B.
    Lhostis, S.
    Mompiou, F.
    Bonafos, C.
    Servanton, G.
    Borowiak, C.
    Lorut, F.
    Bicais-Lepinay, N.
    Toffoli, A.
    Sandhya, C.
    Fantini, A.
    Perniola, L.
    Gourvest, E.
    Maitrejean, S.
    Roule, A.
    Sousa, V.
    Bensahel, D.
    Andre, B.
    APPLIED PHYSICS LETTERS, 2011, 99 (24)
  • [9] In-situ crystallization of GeTe\GaSb phase change memory stacked films
    Velea, A.
    Borca, C. N.
    Socol, G.
    Galca, A. C.
    Grolimund, D.
    Popescu, M.
    van Bokhoven, J. A.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (23)
  • [10] STRUCTURE AND CRYSTALLIZATION BEHAVIOUR OF (GeTe5)100-XGaX NANOSIZED THIN FILMS FOR PHASE-CHANGE APPLICATIONS
    Ilchev, P.
    Petkov, P.
    Wamwangi, D.
    Wuttig, M.
    NANOSTRUCTURED MATERIALS FOR ADVANCED TECHNOLOGICAL APPLICATIONS, 2009, : 429 - +