Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective

被引:39
作者
Ahmad, Katya [1 ]
Rizzi, Andrea [1 ,2 ]
Capelli, Riccardo [3 ]
Mandelli, Davide [1 ]
Lyu, Wenping [4 ,5 ]
Carloni, Paolo [1 ,6 ]
机构
[1] Forschungszentrum Julich, Computat Biomed IAS 5 INM 9, Julich, Germany
[2] Ist Italiano Tecnol, Atomist Simulat, Genoa, Italy
[3] Politecn Torino, Dept Appl Sci & Technol DISAT, Turin, Italy
[4] Chinese Univ Hong Kong Shenzhen, Warshel Inst Computat Biol, Sch Life & Hlth Sci, Shenzhen, Peoples R China
[5] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei, Peoples R China
[6] Forschungszentrum Julich, Mol Neurosci & Neuroimaging INM-11, Julich, Germany
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
kinetics; drug discovery; QM; MM; parallel computing; machine learning; enhanced sampling; molecular dynamics; MOLECULAR-DYNAMICS SIMULATIONS; TARGET RESIDENCE TIME; ATOMICALLY DETAILED SIMULATIONS; FREE-ENERGY CALCULATIONS; CHARGE FORCE-FIELD; P38 MAP KINASE; DRUG DISCOVERY; TRANSITION-STATES; SIDE-CHAIN; INHIBITOR BINDING;
D O I
10.3389/fmolb.2022.899805
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dissociation rate (k(off)) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of k(off). Next, we discuss the impact of the potential energy function models on the accuracy of calculated k(off) values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
引用
收藏
页数:17
相关论文
共 25 条
  • [11] Effective Estimation of Ligand-Binding Affinity Using Biased Sampling Method
    Son Tung Ngo
    Vu, Khanh B.
    Le Minh Bui
    Vu, Van V.
    ACS OMEGA, 2019, 4 (02): : 3887 - 3893
  • [12] Binding kinetics in drug discovery - A current perspective
    Georgi, Victoria
    Andres, Dorothee
    Fernandez-Montalvan, Amaury E.
    Stegmann, Christian M.
    Becker, Andreas
    Mueller-Fahrnow, Anke
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2017, 22 : 21 - 47
  • [13] Prediction of Protein-Ligand Binding Structures by Replica-Exchange Umbrella Sampling Simulations: Application to Kinase Systems
    Kokubo, Hironori
    Tanaka, Toshimasa
    Okamoto, Yuko
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (10) : 4660 - 4671
  • [14] Enhanced sampling of glutamate receptor ligand-binding domains
    Lau, Albert Y.
    NEUROSCIENCE LETTERS, 2019, 700 : 17 - 21
  • [15] Enhanced Sampling Approach to the Induced-Fit Docking Problem in Protein-Ligand Binding: The Case of Mono-ADP-Ribosylation Hydrolase Inhibitors
    Zhao, Qianqian
    Capelli, Riccardo
    Carloni, Paolo
    Luscher, Bernhard
    Li, Jinyu
    Rossetti, Giulia
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (12) : 7899 - 7911
  • [16] The Interaction of Factor Xa and IXa with Non-Activated Antithrombin in Michaelis Complex: Insights from Enhanced-Sampling Molecular Dynamics Simulations
    Balogh, Gabor
    Bereczky, Zsuzsanna
    BIOMOLECULES, 2023, 13 (05)
  • [17] Estimating the ligand-binding affinity via λ-dependent umbrella sampling simulations
    Ngo, Son Tung
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (02) : 117 - 123
  • [18] On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations
    Doerr, S.
    De Fabritiis, G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (05) : 2064 - 2069
  • [19] Entropic and Enthalpic Contributions to Stereospecific Ligand Binding from Enhanced Sampling Methods
    Lai, Balder
    Nagy, Gabor
    Antonio Garate, Jose
    Oostenbrink, Chris
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (01) : 151 - 158
  • [20] Estimation of Protein-Ligand Unbinding Kinetics Using Non-Equilibrium Targeted Molecular Dynamics Simulations
    Wolf, Steffen
    Amaral, Marta
    Lowinski, Maryse
    Vallee, Francois
    Musil, Djordje
    Gueldenhaupt, Joern
    Dreyer, Matthias K.
    Bomke, Joerg
    Frech, Matthias
    Schlitter, Juergen
    Geiwert, Klaus
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (12) : 5135 - 5147