Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective

被引:43
作者
Ahmad, Katya [1 ]
Rizzi, Andrea [1 ,2 ]
Capelli, Riccardo [3 ]
Mandelli, Davide [1 ]
Lyu, Wenping [4 ,5 ]
Carloni, Paolo [1 ,6 ]
机构
[1] Forschungszentrum Julich, Computat Biomed IAS 5 INM 9, Julich, Germany
[2] Ist Italiano Tecnol, Atomist Simulat, Genoa, Italy
[3] Politecn Torino, Dept Appl Sci & Technol DISAT, Turin, Italy
[4] Chinese Univ Hong Kong Shenzhen, Warshel Inst Computat Biol, Sch Life & Hlth Sci, Shenzhen, Peoples R China
[5] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei, Peoples R China
[6] Forschungszentrum Julich, Mol Neurosci & Neuroimaging INM-11, Julich, Germany
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
kinetics; drug discovery; QM; MM; parallel computing; machine learning; enhanced sampling; molecular dynamics; MOLECULAR-DYNAMICS SIMULATIONS; TARGET RESIDENCE TIME; ATOMICALLY DETAILED SIMULATIONS; FREE-ENERGY CALCULATIONS; CHARGE FORCE-FIELD; P38 MAP KINASE; DRUG DISCOVERY; TRANSITION-STATES; SIDE-CHAIN; INHIBITOR BINDING;
D O I
10.3389/fmolb.2022.899805
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dissociation rate (k(off)) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of k(off). Next, we discuss the impact of the potential energy function models on the accuracy of calculated k(off) values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
引用
收藏
页数:17
相关论文
共 208 条
[61]   NMR as a "Gold Standard" Method in Drug Design and Discovery [J].
Emwas, Abdul-Hamid ;
Szczepski, Kacper ;
Poulson, Benjamin Gabriel ;
Chandra, Kousik ;
McKay, Ryan T. ;
Dhahri, Manel ;
Alahmari, Fatimah ;
Jaremko, Lukasz ;
Lachowicz, Joanna Izabela ;
Jaremko, Mariusz .
MOLECULES, 2020, 25 (20)
[62]   Access of ligands to cavities within the core of a protein is rapid [J].
Feher, VA ;
Baldwin, EP ;
Dahlquist, FW .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (06) :516-521
[63]   Molecular Docking and Structure-Based Drug Design Strategies [J].
Ferreira, Leonardo G. ;
dos Santos, Ricardo N. ;
Oliva, Glaucius ;
Andricopulo, Adriano D. .
MOLECULES, 2015, 20 (07) :13384-13421
[64]   Drug target residence time: a misleading concept [J].
Folmer, Rutger H. A. .
DRUG DISCOVERY TODAY, 2018, 23 (01) :12-16
[65]   Machine learning of solvent effects on molecular spectra and reactions [J].
Gastegger, Michael ;
Schuett, Kristof T. ;
Mueller, Klaus-Robert .
CHEMICAL SCIENCE, 2021, 12 (34) :11473-11483
[66]   CHARMM Force-Field Parameters for Morphine, Heroin, and Oliceridine, and Conformational Dynamics of Opioid Drugs [J].
Giannos, Thomas ;
Lesnik, Samo ;
Bren, Urban ;
Hodoscek, Milan ;
Domratcheva, Tatiana ;
Bondar, Ana-Nicoleta .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (08) :3964-3977
[67]   PREDICTING SLOW STRUCTURAL TRANSITIONS IN MACROMOLECULAR SYSTEMS - CONFORMATIONAL FLOODING [J].
GRUBMULLER, H .
PHYSICAL REVIEW E, 1995, 52 (03) :2893-2906
[68]   USE OF PROFLAVIN AS AN INDICATOR IN TEMPERATURE-JUMP STUDIES OF BINDING OF A COMPETITIVE INHIBITOR TO TRYPSIN [J].
GUILLAIN, F ;
THUSIUS, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1970, 92 (18) :5534-&
[69]   Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time [J].
Guo, Dong ;
Mulder-Krieger, Thea ;
IJzerman, Adriaan P. ;
Heitman, Laura H. .
BRITISH JOURNAL OF PHARMACOLOGY, 2012, 166 (06) :1846-1859
[70]   A Multiscale Simulation Approach to Modeling Drug-Protein Binding Kinetics [J].
Haldar, Susanta ;
Comitani, Federico ;
Saladino, Giorgio ;
Woods, Christopher ;
van der Kamp, Marc W. ;
Mulholland, Adrian J. ;
Gervasio, Francesco Luigi .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (11) :6093-6101