Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective

被引:43
作者
Ahmad, Katya [1 ]
Rizzi, Andrea [1 ,2 ]
Capelli, Riccardo [3 ]
Mandelli, Davide [1 ]
Lyu, Wenping [4 ,5 ]
Carloni, Paolo [1 ,6 ]
机构
[1] Forschungszentrum Julich, Computat Biomed IAS 5 INM 9, Julich, Germany
[2] Ist Italiano Tecnol, Atomist Simulat, Genoa, Italy
[3] Politecn Torino, Dept Appl Sci & Technol DISAT, Turin, Italy
[4] Chinese Univ Hong Kong Shenzhen, Warshel Inst Computat Biol, Sch Life & Hlth Sci, Shenzhen, Peoples R China
[5] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei, Peoples R China
[6] Forschungszentrum Julich, Mol Neurosci & Neuroimaging INM-11, Julich, Germany
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
kinetics; drug discovery; QM; MM; parallel computing; machine learning; enhanced sampling; molecular dynamics; MOLECULAR-DYNAMICS SIMULATIONS; TARGET RESIDENCE TIME; ATOMICALLY DETAILED SIMULATIONS; FREE-ENERGY CALCULATIONS; CHARGE FORCE-FIELD; P38 MAP KINASE; DRUG DISCOVERY; TRANSITION-STATES; SIDE-CHAIN; INHIBITOR BINDING;
D O I
10.3389/fmolb.2022.899805
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dissociation rate (k(off)) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of k(off). Next, we discuss the impact of the potential energy function models on the accuracy of calculated k(off) values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
引用
收藏
页数:17
相关论文
共 208 条
[11]   Binding Residence Time through Scaled Molecular Dynamics: A Prospective Application to hDAAO Inhibitors [J].
Bernetti, Mattia ;
Rosini, Elena ;
Mollica, Luca ;
Masetti, Matteo ;
Pollegioni, Loredano ;
Recanatini, Maurizio ;
Cavalli, Andrea .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (11) :2255-2265
[12]   Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles [J].
Best, Robert B. ;
Zhu, Xiao ;
Shim, Jihyun ;
Lopes, Pedro E. M. ;
Mittal, Jeetain ;
Feig, Michael ;
MacKerell, Alexander D., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) :3257-3273
[13]   Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides [J].
Best, Robert B. ;
Hummer, Gerhard .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (26) :9004-9015
[14]   Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment [J].
Blumberger, Jochen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (37) :5651-5667
[15]   Machine Learning in QM/MM Molecular Dynamics Simulations of Condensed-Phase Systems [J].
Boeselt, Lennard ;
Thuerlemann, Moritz ;
Riniker, Sereina .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (05) :2641-2658
[16]   Expanding the boundaries of ligand-target modeling by exascale calculations [J].
Bolnykh, Viacheslav ;
Rossetti, Giulia ;
Rothlisberger, Ursula ;
Carloni, Paolo .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (04)
[17]   Biomolecular Simulation: a Perspective from High Performance Computing [J].
Bolnykh, Viacheslav ;
Rothlisberger, Ursula ;
Carloni, Paolo .
ISRAEL JOURNAL OF CHEMISTRY, 2020, 60 (07) :694-704
[18]   MiMiC: Multiscale Modeling in Computational Chemistry [J].
Bolnykh, Viacheslav ;
Olsen, Jogvan Magnus Haugaard ;
Meloni, Simone ;
Bircher, Martin P. ;
Ippoliti, Emiliano ;
Carloni, Paolo ;
Rothlisberger, Ursula .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
[19]   Enhanced Modeling via Network Theory: Adaptive Sampling of Markov State Models [J].
Bowman, Gregory R. ;
Ensign, Daniel L. ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (03) :787-794
[20]   From A to B in free energy space [J].
Branduardi, Davide ;
Gervasio, Francesco Luigi ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (05)