Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective

被引:39
作者
Ahmad, Katya [1 ]
Rizzi, Andrea [1 ,2 ]
Capelli, Riccardo [3 ]
Mandelli, Davide [1 ]
Lyu, Wenping [4 ,5 ]
Carloni, Paolo [1 ,6 ]
机构
[1] Forschungszentrum Julich, Computat Biomed IAS 5 INM 9, Julich, Germany
[2] Ist Italiano Tecnol, Atomist Simulat, Genoa, Italy
[3] Politecn Torino, Dept Appl Sci & Technol DISAT, Turin, Italy
[4] Chinese Univ Hong Kong Shenzhen, Warshel Inst Computat Biol, Sch Life & Hlth Sci, Shenzhen, Peoples R China
[5] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei, Peoples R China
[6] Forschungszentrum Julich, Mol Neurosci & Neuroimaging INM-11, Julich, Germany
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
kinetics; drug discovery; QM; MM; parallel computing; machine learning; enhanced sampling; molecular dynamics; MOLECULAR-DYNAMICS SIMULATIONS; TARGET RESIDENCE TIME; ATOMICALLY DETAILED SIMULATIONS; FREE-ENERGY CALCULATIONS; CHARGE FORCE-FIELD; P38 MAP KINASE; DRUG DISCOVERY; TRANSITION-STATES; SIDE-CHAIN; INHIBITOR BINDING;
D O I
10.3389/fmolb.2022.899805
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dissociation rate (k(off)) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of k(off). Next, we discuss the impact of the potential energy function models on the accuracy of calculated k(off) values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
引用
收藏
页数:17
相关论文
共 25 条
  • [1] Enhanced Configurational Sampling Approaches to Alchemical Ligand Binding Free Energy Simulations: Current Status and Challenges
    Jiang, Wei
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (31) : 6835 - 6841
  • [2] Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex
    Shao, Qiang
    Zhu, Weiliang
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (38) : 7974 - 7983
  • [3] Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness
    Conflitti, Paolo
    Raniolo, Stefano
    Limongelli, Vittorio
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (18) : 6047 - 6061
  • [4] Binding affinity estimation from restrained umbrella sampling simulations
    Kumar, Vivek Govind
    Polasa, Adithya
    Agrawal, Shilpi
    Kumar, Thallapuranam Krishnaswamy Suresh
    Moradi, Mahmoud
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (01): : 59 - 70
  • [5] Concerted enhanced-sampling simulations to elucidate the helix-fibril transition pathway of intrinsically disordered ?-Synuclein
    Saurabh, Archi
    Prabhu, N. Prakash
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 223 : 1024 - 1041
  • [6] Predicting Protein-Ligand Binding and Unbinding Kinetics with Biased MD Simulations and Coarse-Graining of Dynamics: Current State and Challenges
    Wolf, Steffen
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (10) : 2902 - 2910
  • [7] Editorial: Mechanisms, thermodynamics and kinetics of ligand binding revealed from molecular simulations and machine learning
    Miao, Yinglong
    Chang, Chia-En A.
    Zhu, Weiliang
    McCammon, J. Andrew
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 10
  • [8] Predicting the Structure-Activity Relationship of Hydroxyapatite-Binding Peptides by Enhanced-Sampling Molecular Simulation
    Zhao, Weilong
    Xu, Zhijun
    Cui, Qiang
    Sahai, Nita
    LANGMUIR, 2016, 32 (27) : 7009 - 7022
  • [9] Ab Initio Prediction of Protein-Ligand Binding Structures by Replica-Exchange Umbrella Sampling Simulations
    Kokubo, Hironori
    Tanaka, Toshimasa
    Okamoto, Yuko
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (13) : 2810 - 2821
  • [10] Machine Learning and Enhanced Sampling Simulations for Computing the Potential of Mean Force and Standard Binding Free Energy
    Bertazzo, Martina
    Gobbo, Dorothea
    Decherchi, Sergio
    Cavalli, Andrea
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (08) : 5287 - 5300