Curvature in graphene nanoribbons generates temporally and spatially focused electric currents

被引:17
作者
da Rocha, Claudia Gomes [1 ,2 ]
Tuovinen, Riku [2 ]
van Leeuwen, Robert [2 ]
Koskinen, Pekka [2 ]
机构
[1] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland
[2] Univ Jyvaskyla, Dept Phys, Nanosci Ctr, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
TRANSPORT;
D O I
10.1039/c5nr00684h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Today graphene nanoribbons and other graphene-based nanostructures can be synthesized with atomic precision. But while investigations have concentrated on straight graphene ribbons of fixed crystal orientation, ribbons with intrinsic curvature have remained mainly unexplored. Here, we investigate electronic transport in intrinsically curved graphene nanoribbons coupled to straight leads using two computational approaches. Stationary approach shows how transport gaps are affected both by the straight leads and by the degree of edge asymmetry in the curved ribbons. An advanced time-dependent approach shows that behind the facade of calm stationary transport the currents run violently: curvature triggers temporally and spatially focused electric currents, to the extent that for short durations single carbon-carbon bonds carry currents far exceeding the steady-state currents in the entire ribbons. Recognizing this focusing is pivotal for a robust design of graphene sensors and circuitries.
引用
收藏
页码:8627 / 8635
页数:9
相关论文
共 57 条
[1]   Meniscus-Mask Lithography for Narrow Graphene Nanoribbons [J].
Abramova, Vera ;
Slesarev, Alexander S. ;
Tour, James M. .
ACS NANO, 2013, 7 (08) :6894-6898
[2]  
Addison PS, 2002, The illustrated wavelet transform handbook: introductory theory and applications in science
[3]  
[Anonymous], MATLAB WAV TOOLB REL
[4]   Application of the wavelet transform to nanoscale thermal transport [J].
Baker, Christopher H. ;
Jordan, Donald A. ;
Norris, Pamela M. .
PHYSICAL REVIEW B, 2012, 86 (10)
[5]  
Barford LeeA., 1992, INTRO WAVELETS
[6]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[7]   Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures [J].
Bertolazzi, Simone ;
Krasnozhon, Daria ;
Kis, Andras .
ACS NANO, 2013, 7 (04) :3246-3252
[8]   4-TERMINAL PHASE-COHERENT CONDUCTANCE [J].
BUTTIKER, M .
PHYSICAL REVIEW LETTERS, 1986, 57 (14) :1761-1764
[9]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162