Application of a Diffuser Structure to Vertical-Axis Wind Turbines

被引:35
|
作者
Watanabe, Koichi [1 ]
Takahashi, Shuhei [1 ]
Ohya, Yuji [2 ]
机构
[1] Kyushu Univ, Dept Aeronaut & Astronaut, Fukuoka 8168580, Japan
[2] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan
来源
ENERGIES | 2016年 / 9卷 / 06期
关键词
wind lens; vertical-axis wind turbine; wind acceleration device; wind tunnel experiment;
D O I
10.3390/en9060406
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The effects of using a wind acceleration device (wind lens) with vertical-axis wind turbines in wind tunnel experiments were examined. A wind lens consists of a diffuser and flanges, and this study investigated the optimum parameters of their configuration with regard to the power augmentation of the turbines. The wind lens with a flat-panel-type diffuser demonstrated power augmentation by a factor of 2.0 compared with an open wind turbine. An increase from 5 to 20 degrees in the semi-open angle of the diffuser made it possible to generate a 30% high power output over a wide range of tip speed ratios. On that basis, an optimum semi-open angle was determined. For the flat-panel-type diffuser, a recommended diffuser length is the half of the throat width, and its semi-open angle is 20 degrees. The inlet enhanced power augmentation over a wide range of tip speed ratios. The optimum location for the wind lens in the streamwise direction was aligned with the center of the vertical-axis wind turbines. The diffuser with a curved surface was more effective regarding power augmentation than flat-panel-type diffusers. The wind lens with a curved surface diffuser demonstrated power augmentation by a factor of about 2.1 compared with an open wind turbine. Furthermore, it was demonstrated that a two-bladed wind turbine with symmetric NACA0024-type airfoils was most suitable for the incorporation of a wind lens to generate higher power output.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A new dynamic inflow model for vertical-axis wind turbines
    De Tavernier, Delphine
    Ferreira, Carlos S.
    WIND ENERGY, 2020, 23 (05) : 1196 - 1209
  • [22] Dynamic Analysis of Vertical-Axis Wind Turbines under the Rotation
    Li, Chunxiang
    Yu, Anqi
    Li, Jinhua
    Xiang, Bian
    POWER AND ENERGY ENGINEERING CONFERENCE 2010, 2010, : 634 - 638
  • [23] ELECTRIC-POWER FROM VERTICAL-AXIS WIND TURBINES
    TOURYAN, KJ
    STRICKLAND, JH
    BERG, DE
    JOURNAL OF PROPULSION AND POWER, 1987, 3 (06) : 481 - 493
  • [24] MATHEMATICAL MODELLING OF VERTICAL-AXIS WIND TURBINES ROTORS AERODYNAMICS
    Dovgyi, S.
    Moiseienko, S.
    Polevoy, O.
    Redchyts, D.
    Tarasov, S.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2024, 2024, : 31 - 37
  • [25] Towards the evolution of vertical-axis wind turbines using supershapes
    Preen R.J.
    Bull L.
    Evolutionary Intelligence, 2014, 7 (3) : 155 - 167
  • [26] Airfoil optimisation for vertical-axis wind turbines with variable pitch
    De Tavernier, Delphine
    Ferreira, Carlos
    van Bussel, Gerard
    WIND ENERGY, 2019, 22 (04) : 547 - 562
  • [27] Experimental investigation of an optimized airfoil for vertical-axis wind turbines
    Ragni, Daniele
    Ferreira, Carlos Simao
    Correale, Giuseppe
    WIND ENERGY, 2015, 18 (09) : 1629 - 1643
  • [28] AERODYNAMICS OF SMALL-SCALE VERTICAL-AXIS WIND TURBINES
    PARASCHIVOIU, I
    DESY, P
    JOURNAL OF PROPULSION AND POWER, 1986, 2 (03) : 282 - 288
  • [29] Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines
    Scheurich, Frank
    Brown, Richard E.
    AIAA JOURNAL, 2011, 49 (11) : 2511 - 2521
  • [30] Review of Recent Patents on Vertical-Axis Wind Turbines (VAWTs)
    Zoucha, Jack
    Crespo, Cristina
    Wolf, Hanna
    Aboy, Mateo
    Recent Patents on Engineering, 2023, 17 (04) : 3 - 15