Porous Carbon Hollow Rod for Supercapacitors with High Energy Density

被引:29
作者
Chen, Chong [1 ]
Wang, Hongyan [1 ]
Xiao, Qingguang [1 ]
Zhao, Mingkun [1 ]
Li, Yanjiang [1 ]
Zhao, Guangzhen [2 ]
Xie, Yong [1 ]
Chen, Xiangying [3 ]
Zhu, Guang [1 ]
机构
[1] Suzhou Univ, Key Lab Spin Electron & Nanomat, Anhui Higher Educ Inst, Suzhou 234000, Peoples R China
[2] Northeast Elect Power Univ, Energy Resources & Power Engn Coll, Jilin 132012, Jilin, Peoples R China
[3] Hefei Univ Technol, Sch Chem Engn, Anhui Key Lab Controllable Chem React & Mat Chem, Hefei 230009, Anhui, Peoples R China
关键词
PERFORMANCE SUPERCAPACITORS; ACTIVATED CARBONS; GRAPHITIC CARBON; FACILE SYNTHESIS; IONIC LIQUIDS; SURFACE-AREA; HIGH-POWER; ELECTRODE; NITROGEN; CHALLENGES;
D O I
10.1021/acs.iecr.9b05133
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this work, we demonstrate a novel strategy for producing a porous carbon hollow rod (PCHR) via simple carbonization of magnesium gluconate. The mass ratios of PCHR/KOH are a key factor in directly determining the PCHR shape, specific surface areas, and pore structures. The obtained PCHR-4 exhibits an ultra-high specific surface area (1980 m(2) g(-1)), high density micropores (0.7-2 nm), a hollow rod shape structure, a hierarchical pore structure, and rich O-doping (8.8 wt %). PCHR-4-based supercapacitors in ionic liquid exhibit an ultrahigh specific capacitance of up to 225 F g(-1) More importantly, the PCHR-4 symmetrical supercapacitor can deliver a maximum energy density of 70.4 W h kg(-1), which is superior to those recently reported carbon-based symmetric supercapacitors in ionic liquid.
引用
收藏
页码:22124 / 22132
页数:9
相关论文
共 50 条
[21]   N, S Co-doped hierarchical porous carbon rods derived from protic salt: Facile synthesis for high energy density supercapacitors [J].
Miao, Ling ;
Zhu, Dazhang ;
Liu, Mingxian ;
Duan, Hui ;
Wang, Zhiwei ;
Lv, Yaokang ;
Xiong, Wei ;
Zhu, Quanjing ;
Li, Liangchun ;
Chai, Xiaolan ;
Gan, Lihua .
ELECTROCHIMICA ACTA, 2018, 274 :378-388
[22]   Highly porous carbon nanofibers co-doped with fluorine and nitrogen for outstanding supercapacitor performance [J].
Na, Wonjoo ;
Jun, Jaemoon ;
Park, Jin Wook ;
Lee, Gyeongseop ;
Jang, Jyongsik .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (33) :17379-17387
[23]  
Pachfule P, 2016, NAT CHEM, V8, P718, DOI [10.1038/nchem.2515, 10.1038/NCHEM.2515]
[24]  
Salanne M, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.70, 10.1038/NENERGY.2016.70]
[25]   Energy storage applications of activated carbons: supercapacitors and hydrogen storage [J].
Sevilla, Marta ;
Mokaya, Robert .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1250-1280
[26]   Materials for electrochemical capacitors [J].
Simon, Patrice ;
Gogotsi, Yury .
NATURE MATERIALS, 2008, 7 (11) :845-854
[27]   REPORTING PHYSISORPTION DATA FOR GAS SOLID SYSTEMS WITH SPECIAL REFERENCE TO THE DETERMINATION OF SURFACE-AREA AND POROSITY (RECOMMENDATIONS 1984) [J].
SING, KSW ;
EVERETT, DH ;
HAUL, RAW ;
MOSCOU, L ;
PIEROTTI, RA ;
ROUQUEROL, J ;
SIEMIENIEWSKA, T .
PURE AND APPLIED CHEMISTRY, 1985, 57 (04) :603-619
[28]   High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte [J].
Song, Ziyang ;
Duan, Hui ;
Li, Liangchun ;
Zhu, Dazhang ;
Cao, Tongcheng ;
Lv, Yaokang ;
Xiong, Wei ;
Wang, Zhiwei ;
Liu, Mingxian ;
Gan, Lihua .
CHEMICAL ENGINEERING JOURNAL, 2019, 372 :1216-1225
[29]   A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications [J].
Strauss, Volker ;
Marsh, Kris ;
Kowal, Matthew D. ;
El-Kady, Maher ;
Kaner, Richard B. .
ADVANCED MATERIALS, 2018, 30 (08)
[30]   High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes [J].
Su, Hai ;
Zhang, Haitao ;
Liu, Fangyan ;
Chun, Fengjun ;
Zhang, Binbin ;
Chu, Xiang ;
Huang, Haichao ;
Deng, Weili ;
Gu, Bingni ;
Zhang, Hepeng ;
Zheng, Xiaotong ;
Zhu, Minhao ;
Yang, Weiqing .
CHEMICAL ENGINEERING JOURNAL, 2017, 322 :73-81