Solvable symmetric Poisson algebras and their derived lengths

被引:7
作者
Siciliano, Salvatore [1 ]
机构
[1] Univ Salento, Dipartimento Maternat & Fis Ennio De Giorgi, Via Prov Lecce Arnesano, I-73100 Lecce, Italy
关键词
Symmetric Poisson algebra; Truncated symmetric Poisson algebra; Solvable Lie algebra; Derived length; Lie identity; Metabelian Lie algebra; ENVELOPING-ALGEBRAS; LIE-STRUCTURE; IDENTITIES;
D O I
10.1016/j.jalgebra.2019.10.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a Lie algebra over a field of positive characteristic and let S(L) and s(L) denote, respectively, the symmetric Poisson algebra and the truncated symmetric Poisson algebra of L. As a natural continuation of the work by Monteiro Alves and Petrogradsky in [9], we investigate the structure of L when S(L) or s(L) is solvable. We first disprove a conjecture stated in [9] about solvability of S(L) (and s(L)) in characteristic 2. Next, the derived lengths of s(L) are studied. In particular, we provide bounds for the derived lengths of s(L), establish when s(L) is metabelian, and characterize truncated symmetric Poisson algebras of minimal derived length. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:98 / 110
页数:13
相关论文
共 20 条
[1]   Lie structure of truncated symmetric Poisson algebras [J].
Alves, Ilana Z. Monteiro ;
Petrogradsky, Victor .
JOURNAL OF ALGEBRA, 2017, 488 :244-281
[2]  
Amayo R.K., 1974, INFINITE DIMENSIONAL
[3]   Restricted Enveloping Algebras with Minimal Lie Derived Length [J].
Catino, Francesco ;
Siciliano, Salvatore ;
Spinelli, Ernesto .
ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (06) :653-660
[4]  
Dixmier J., 1996, Graduate Studies in Mathematics
[5]   Poisson polynomial identities II [J].
Farkas, DR .
ARCHIV DER MATHEMATIK, 1999, 72 (04) :252-260
[6]   Poisson polynomial identities [J].
Farkas, DR .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (02) :401-416
[7]   Poisson identities of enveloping algebras [J].
Giambruno, A. ;
Petrogradsky, V. M. .
ARCHIV DER MATHEMATIK, 2006, 87 (06) :505-515
[8]   A LIE-ALGEBRA GENERALIZATION OF THE AMITSUR-LEVITSKI THEOREM [J].
KOSTANT, B .
ADVANCES IN MATHEMATICS, 1981, 40 (02) :155-175
[9]  
Levin F., 1994, RESULTS MATH, V26, P83
[10]   LIE SOLVABLE GROUP RINGS [J].
PASSI, IBS ;
PASSMAN, DS ;
SEHGAL, SK .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (04) :748-757