Stack design and performance of polymer electrolyte membrane fuel cells

被引:65
|
作者
Jiang, RZ [1 ]
Chu, DR [1 ]
机构
[1] USA, Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA
关键词
fuel cell; PEMFC; fuel cell stack; stack design; fuel cell structures;
D O I
10.1016/S0378-7753(00)00539-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three types of stack structure designs of polymer electrolyte membrane electrolyte fuel cells (PEMFCs) were reviewed and evaluated under various humidities and temperatures, including bipolar, pseudo bipolar and monopolar (strip) stacks. The bipolar stack design is suitable for delivering moderate to high power, but if a single cell, fails it may lead to a loss of power for the whole stack Water, heat, fuel and air management is required in bipolar plate design. For the pseudo-bipolar cell stack design it is easy to achieve high power by simple addition of more bi-cell units, but each bi-cell has to be filled with fuel and air separately. In the monopolar cell stack design a common gas flow field is shared by a whole strip, when a single cell fails the stack performance will not be affected seriously. Monopolar cell stack design is suitable for applications in low power and high voltage devices because of its high internal resistance. Published by Elsevier Science B.V.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 50 条
  • [41] Dynamic modelling of a polymer electrolyte membrane fuel cell stack by nonlinear system identification
    Buchholz, M.
    Krebs, V.
    FUEL CELLS, 2007, 7 (05) : 392 - 401
  • [42] Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start
    Lin, Rui
    Zhu, Yike
    Ni, Meng
    Jiang, Zhenghua
    Lou, Diming
    Han, Lihang
    Zhong, Di
    APPLIED ENERGY, 2019, 241 : 420 - 432
  • [43] Temperature Reduction as Operando Performance Recovery Procedure for Polymer Electrolyte Membrane Fuel Cells
    Zhang, Qian
    Schulze, Mathias
    Gazdzicki, Pawel
    Friedrich, Kaspar Andreas
    ENERGIES, 2024, 17 (04)
  • [44] Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design
    Hwang, Wonchan
    Sung, Yung-Eun
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2023, 14 (02) : 120 - 130
  • [45] Design Models of Polymer Electrolyte Membrane Fuel Cell System
    Mulyazmi
    Daud, Wan Ramli Wan
    Majlan, Edy Herianto
    ADVANCED PRECISION ENGINEERING, 2010, 447-448 : 554 - 558
  • [46] Performance improvement of electrode for polymer electrolyte membrane fuel cell
    Tae-Hyun Yang
    Gu-gon Park
    Perumal Pugazhendhi
    Won-Yong Lee
    Chang Soo Kim
    Korean Journal of Chemical Engineering, 2002, 19 : 417 - 420
  • [47] Fluorinated polyoxadiazole for high-temperature polymer electrolyte membrane fuel cells
    Gomes, Dominique
    Nunes, Suzana P.
    JOURNAL OF MEMBRANE SCIENCE, 2008, 321 (01) : 114 - 122
  • [48] Influence of the dwell time in the polarization hysteresis of polymer electrolyte membrane fuel cells
    Iranzo, Alfredo
    Navas, Sergio J.
    Pino, Javier
    Althubiti, Numa A.
    Berber, Mohamed R.
    ELECTROCHIMICA ACTA, 2022, 426
  • [49] Effect of operating parameters on the transient performance of a polymer electrolyte membrane fuel cell stack with a dead-end anode
    Gomez, Alberto
    Raj, Abhishek
    Sasmito, Agus P.
    Shamim, Tariq
    APPLIED ENERGY, 2014, 130 : 692 - 701
  • [50] Performance improvement of electrode for polymer electrolyte membrane fuel cell
    Yang, TH
    Park, GG
    Pugazhendhi, P
    Lee, WY
    Kim, CS
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2002, 19 (03) : 417 - 420