Isometries for unitarily invariant norms

被引:19
作者
Chan, JT
Li, CK [1 ]
Sze, NS
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
isometry; unitarily invariant norm; singular values;
D O I
10.1016/j.laa.2004.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A survey of linear isometries for unitarily invariant norms on real or complex rectangular matrices is given which includes some latest development on the topic. A result on isometrics for unitarily invariant norms without the linearity assumption is presented. Related results and problems are discussed. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 50 条
[11]  
CHU CH, 1993, J LOND MATH SOC, V47, P97
[12]  
Deutsch E., 1974, Linear Algebra and Its Applications, V9, P9, DOI 10.1016/0024-3795(74)90022-6
[13]  
DJOKOVIC DZ, 1994, LINEAR ALGEBRA APPL, V197, P31
[14]  
DJOKOVIC DZ, 1990, LINEAR MULTILINEAR A, V27, P73
[15]  
Fan K, 1955, P AM MATH SOC, V6, P111, DOI DOI 10.2307/2032662
[16]   INVARIANCE OF PARTIAL ISOMETRIES [J].
GRONE, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (03) :445-449
[17]   CERTAIN ISOMETRIES OF RECTANGULAR COMPLEX MATRICES [J].
GRONE, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 29 (FEB) :161-171
[18]   ISOMETRIES OF MATRIX ALGEBRAS [J].
GRONE, R ;
MARCUS, M .
JOURNAL OF ALGEBRA, 1977, 47 (01) :180-189
[19]  
GRONE R, 1976, THESIS UC SANTA BARB
[20]  
Guralnick R., 1997, LINEAR MULTILINEAR A, V43, P257, DOI 10.1080/03081089708818528