Physiological and transcriptome analyses reveal the response of Ammopiptanthus mongolicus to extreme seasonal temperatures in a cold plateau desert ecosystem

被引:9
|
作者
Yang, Zimeng [1 ,2 ]
Liu, Yiying [1 ,2 ]
Han, Hang [1 ,2 ]
Zhao, Xinyu [1 ,2 ]
Chen, Siyu [1 ,2 ]
Li, Guofang [1 ,2 ]
Shi, Sha [1 ,2 ]
Feng, Jinchao [1 ,2 ]
机构
[1] Minzu Univ China, Natl Ethn Affairs Commiss, Key Lab Ecol & Environm Minor Areas, Beijing 100081, Peoples R China
[2] Minzu Univ China, Coll Life & Environm Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOSYNTHESIS; EVERGREEN; LEAVES; PLANT;
D O I
10.1038/s41598-022-14402-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ammopiptanthus mongolicus is the only evergreen broad-leaved shrub present in arid areas of Northwest China and plays an important role in maintaining the stability of the local desert ecosystem. It can survive under extreme temperatures (e.g., extreme low temperature: - 24.8 degrees C and extreme high temperature: 37.7 degrees C). To understand the gene expression-physiological regulation network of A. mongolicus in extreme temperature environments, we monitored the changes in gene expression and photosynthetic traits of the leaves. The results showed that at low temperatures, the net photosynthetic rates (A), Fv'/Fm' and electron transport rate (ETR) decreased, the Fv/Fm ratio was only 0.32, and the proportion of nonregulatory heat dissipation Y(NO) increased. Based on a KEGG analysis of the differentially expressed genes, 15 significantly enriched KEGG pathways were identified, which were mainly related to circadian rhythm, photosynthesis, lipid metabolism, carbohydrate metabolism, plant hormones and other life activities. At high temperatures, the A value increased, and the proportion of regulatory energy dissipation Y(NPQ) increased. The KEGG analysis identified 24 significantly enriched KEGG pathways, which are mainly related to circadian rhythm, carbon sequestration of photosynthesis, carotenoid biosynthesis, secondary metabolites, cofactors and vitamin metabolism. In general, at the expense of photosynthesis, A. mongolicus can ensure the survival of leaves by increasing Y(NO) levels, regulating the circadian rhythm, increasing the synthesis of unsaturated fatty acids and changing the role of plant hormones. Under high-temperature stress, a high photosynthetic capacity was maintained by adjusting the stomatal conductance (g(sw)), increasing Y(NPQ), consuming excess light energy, continuously assembling and maintaining PSII, and changing the production of antioxidants.
引用
收藏
页数:12
相关论文
共 23 条
  • [21] Physiological and transcriptome analyses reveal the photosynthetic response to drought stress in drought-sensitive (Fengjiao) and drought-tolerant (Hanjiao) Zanthoxylum bungeanum cultivars
    Hu, Haichao
    He, Beibei
    Ma, Lei
    Chen, Xin
    Han, Peilin
    Luo, Yingli
    Liu, Yonghong
    Fei, Xitong
    Wei, Anzhi
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [22] Integrated comparative physiological and transcriptomic analyses of Elymus sibiricus L. reveal the similarities and differences in the molecular mechanisms in response to drought and cold stress
    Li, Xinrui
    Chen, Lili
    Li, Daxu
    You, Minghong
    Li, Yingzhu
    Yan, Lijun
    Yan, Jiajun
    Gou, Wenlong
    Chang, Dan
    Ma, Xiao
    Bai, Shiqie
    Peng, Yan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 219
  • [23] Integrated analyses of transcriptome, proteome and fatty acid profilings of the oleaginous microalga Auxenochlorella protothecoides UTEX 2341 reveal differential reprogramming of fatty acid metabolism in response to low and high temperatures
    Xing, GuanLan
    Yuan, HongLi
    Yang, JinShui
    Li, JinYu
    Gao, QuanXiu
    Li, WeiLin
    Wang, EnTao
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2018, 33 : 16 - 27