On Darboux-integrable semi-discrete chains

被引:15
作者
Habibullin, Ismagil [1 ]
Zheltukhina, Natalya [2 ]
Sakieva, Alfia [1 ]
机构
[1] Russian Acad Sci, Ufa Inst Math, Ufa 450077, Russia
[2] Bilkent Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey
基金
俄罗斯基础研究基金会;
关键词
EQUATIONS; ALGEBRA;
D O I
10.1088/1751-8113/43/43/434017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A differential-difference equation d/dx t(n + 1, x) = f(x, t(n, x), t(n + 1, x), d/dxt(n, x)) with unknown t(n, x) depending on the continuous and discrete variables x and n is studied. We call an equation of such kind Darboux integrable if there exist two functions (called integrals) F and I of a finite number of dynamical variables such that D(x)F = 0 and DI = I, where D(x) is the operator of total differentiation with respect to x and D is the shift operator: Dp(n) = p(n + 1). It is proved that the integrals can be brought to some canonical form. A method of construction of an explicit formula for a general solution to Darboux-integrable chains is discussed and such solutions are found for a class of chains.
引用
收藏
页数:14
相关论文
共 15 条
[1]   Discrete analogues of the Liouville equation [J].
Adler, VE ;
Startsev, SY .
THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 121 (02) :1484-1495
[2]  
GOURSAT ME, 1899, ANN FAMLTE SCI U T 2, V1, P31
[3]  
GRAMMATICOS B, 1992, NATO ADV SCI INST SE, V298, P75
[4]  
HABIBULLIN I, 2010, ARXIVNLIN10063423, P34033
[5]   Characteristic Lie algebra and classification of semidiscrete models [J].
Habibullin, I. T. ;
Pekcan, A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (03) :781-790
[6]   On the classification of Darboux integrable chains [J].
Habibullin, Ismagil ;
Zheltukhina, Natalya ;
Pekcan, Asli .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (10)
[7]   Complete list of Darboux integrable chains of the form t1x=tx+d(t,t1) [J].
Habibullin, Ismagil ;
Zheltukhina, Natalya ;
Pekcan, Asli .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
[8]  
IBRAGIMOV NK, 1992, RUSS MATH SURV, V47, P85
[9]   THE DISCRETE KORTEWEG-DE VRIES EQUATION [J].
NIJHOFF, F ;
CAPEL, H .
ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) :133-158
[10]   Ermakov systems of arbitrary order and dimension: Structure and linearization [J].
Schief, WK ;
Rogers, C ;
Bassom, AP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04) :903-911