On Darboux-integrable semi-discrete chains

被引:15
作者
Habibullin, Ismagil [1 ]
Zheltukhina, Natalya [2 ]
Sakieva, Alfia [1 ]
机构
[1] Russian Acad Sci, Ufa Inst Math, Ufa 450077, Russia
[2] Bilkent Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey
基金
俄罗斯基础研究基金会;
关键词
EQUATIONS; ALGEBRA;
D O I
10.1088/1751-8113/43/43/434017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A differential-difference equation d/dx t(n + 1, x) = f(x, t(n, x), t(n + 1, x), d/dxt(n, x)) with unknown t(n, x) depending on the continuous and discrete variables x and n is studied. We call an equation of such kind Darboux integrable if there exist two functions (called integrals) F and I of a finite number of dynamical variables such that D(x)F = 0 and DI = I, where D(x) is the operator of total differentiation with respect to x and D is the shift operator: Dp(n) = p(n + 1). It is proved that the integrals can be brought to some canonical form. A method of construction of an explicit formula for a general solution to Darboux-integrable chains is discussed and such solutions are found for a class of chains.
引用
收藏
页数:14
相关论文
共 15 条
  • [1] Discrete analogues of the Liouville equation
    Adler, VE
    Startsev, SY
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 121 (02) : 1484 - 1495
  • [2] GOURSAT ME, 1899, ANN FAMLTE SCI U T 2, V1, P31
  • [3] GRAMMATICOS B, 1992, NATO ADV SCI INST SE, V298, P75
  • [4] HABIBULLIN I, 2010, ARXIVNLIN10063423, P34033
  • [5] Characteristic Lie algebra and classification of semidiscrete models
    Habibullin, I. T.
    Pekcan, A.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (03) : 781 - 790
  • [6] On the classification of Darboux integrable chains
    Habibullin, Ismagil
    Zheltukhina, Natalya
    Pekcan, Asli
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (10)
  • [7] Complete list of Darboux integrable chains of the form t1x=tx+d(t,t1)
    Habibullin, Ismagil
    Zheltukhina, Natalya
    Pekcan, Asli
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [8] IBRAGIMOV NK, 1992, RUSS MATH SURV, V47, P85
  • [9] THE DISCRETE KORTEWEG-DE VRIES EQUATION
    NIJHOFF, F
    CAPEL, H
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 133 - 158
  • [10] Ermakov systems of arbitrary order and dimension: Structure and linearization
    Schief, WK
    Rogers, C
    Bassom, AP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04): : 903 - 911