Beam-plasma instability in charged plasma in the absence of ions

被引:26
作者
Dubinov, Alexander E. [1 ,2 ]
Petrik, Alexey G. [3 ]
Kurkin, Semen A. [3 ,4 ]
Frolov, Nikita S. [3 ,4 ]
Koronovskii, Alexey A. [3 ,4 ]
Hramov, Alexander E. [3 ,4 ]
机构
[1] Natl Res Nucl Univ MEPhI, Kashirskoe Highway 31, Moscow 115409, Russia
[2] Natl Res Nucl Univ MEPhI, Sarov State Inst Phys & Technol SarFTI, Dukhova Str 6, Sarov 607186, Nizhni Novgorod, Russia
[3] Saratov State Tech Univ, Politechnicheskaja 77, Saratov 410028, Russia
[4] Saratov NG Chernyshevskii State Univ, Astrakhanskaja 83, Saratov 410012, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
ELECTRON-BEAM; NONLINEAR DYNAMICS; SQUEEZED STATE; VIRCATOR; ACCELERATION; SIMULATIONS; EXCITATION; FEATURES; CLOUD;
D O I
10.1063/1.4945644
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report on the possibility of the beam-plasma instability development in the system with electron beam interacting with the single-component hot electron plasma without ions. As considered system, we analyse the interaction of the low-current relativistic electron beam (REB) with squeezed state in the high-current REB formed in the relativistic magnetically insulated two-section vircator drift space. The numerical analysis is provided by means of 3D electromagnetic simulation in CST Particle Studio. We have conducted an extensive study of characteristic regimes of REB dynamics determined by the beam-plasma instability development in the absence of ions. As a result, the dependencies of instability increment and wavelength on the REB current value have been obtained. The considered process brings the new mechanism of controlled microwave amplification and generation to the device with a virtual cathode. This mechanism is similar to the action of the beam-plasma amplifiers and oscillators. (c) 2016 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 45 条
  • [1] AKHIEZER AI, 1949, DOKL AKAD NAUK SSSR+, V69, P555
  • [2] Balk MC, 2008, IEEE INT VAC ELECT C, P456, DOI 10.1109/IVELEC.2008.4556402
  • [3] Beam discharge excited by distributed virtual cathode
    Barabanov, V. N.
    Dubinov, A. E.
    Loiko, M. V.
    Saikov, S. K.
    Selemir, V. D.
    Tarakanov, V. P.
    [J]. PLASMA PHYSICS REPORTS, 2012, 38 (02) : 169 - 178
  • [4] Measuring the virtual cathode velocity
    Belomyttsev, S. Ya.
    Grishkov, A. A.
    Kitsanov, S. A.
    Kurkan, I. K.
    Polevin, S. D.
    Ryzhov, V. V.
    Tsygankov, R. V.
    [J]. TECHNICAL PHYSICS LETTERS, 2008, 34 (07) : 546 - 548
  • [5] Motion of a virtual cathode in a cylindrical channel with electron beam transport in the "compressed" state
    Belomyttsev, S. Ya.
    Grishkov, A. A.
    Kurkan, I. K.
    Tsygankov, R. V.
    [J]. PHYSICS OF PLASMAS, 2014, 21 (03)
  • [6] Experimental investigation of electron beam in the squeezed state
    Belomyttsev, SY
    Grishkov, AA
    Kitsanov, SA
    Korovin, SD
    Polevin, SD
    Ryzhov, VV
    Yachnyi, AP
    [J]. TECHNICAL PHYSICS LETTERS, 2005, 31 (11) : 982 - 985
  • [7] The virtual cathode velocity during electron beam transport in a drift tube
    Belomyttsev, SY
    Grishkov, AA
    Korovin, SD
    Ryzhov, VV
    [J]. TECHNICAL PHYSICS LETTERS, 2004, 30 (12) : 1060 - 1063
  • [8] Berezin A.K., 1962, Sov. Atom. Energy, V11, P1143
  • [9] Experimental and numerical analysis of the electron injection in a Malmberg-Penning trap
    Bettega, G.
    Cavaliere, F.
    Cavenago, M.
    Illiberi, A.
    Pozzoli, R.
    Rome, M.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (04)
  • [10] Experimental study and numerical simulations of a plasma relativistic microwave amplifier
    Bogdankevich, I. L.
    Ivanov, I. E.
    Strelkov, P. S.
    [J]. PLASMA PHYSICS REPORTS, 2010, 36 (09) : 762 - 771