Local rigidity of partially hyperbolic actions I. KAM method and Zk actions on the torus

被引:38
作者
Damjanovic, Danijela [1 ]
Katok, Anatole [2 ]
机构
[1] Rice Univ, Dept Math, Houston, TX 77005 USA
[2] Penn State Univ, Dept Math, State Coll, PA 16802 USA
基金
美国国家科学基金会;
关键词
RANK ABELIAN-GROUPS; TORAL AUTOMORPHISMS; LATTICE ACTIONS; LIE-GROUPS; COHOMOLOGY;
D O I
10.4007/annals.2010.172.1805
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show C-infinity local rigidity for Z(k) (k >= 2) higher rank partially hyperbolic actions by toral automorphisms, using a generalization of the KAM (Kolmogorov-Arnold- Moser) iterative scheme. We also prove the existence of irreducible genuinely partially hyperbolic higher rank actions on any torus T-N for any even N >= 6.
引用
收藏
页码:1805 / 1858
页数:54
相关论文
共 38 条
[1]  
[Anonymous], 1977, LECT NOTES MATH
[2]   Rigidity of isometric lattice actions on compact Riemannian manifolds [J].
Benveniste, EJ .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (03) :516-542
[3]  
Blanksby P. E., 1971, Acta Arith., V18, P355, DOI [10.4064/aa-18-1-355-369, DOI 10.4064/AA-18-1-355-369]
[4]  
Camacho C., 1985, GEOMETRIC THEORY FOL
[5]  
DAMJANOVI D, LOCAL RIGIDITY CERTA
[6]  
Damjanovic D, 2005, DISCRETE CONT DYN-A, V13, P985
[7]   Local rigidity of actions of higher rank Abelian groups and Kam method [J].
Damjanovic, D ;
Katok, A .
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 10 :142-154
[8]   Central extensions of simple lie groups and rigidity of some abelian partially hyperbolic algebraic actions [J].
Damjanovic, Danijela .
JOURNAL OF MODERN DYNAMICS, 2007, 1 (04) :665-688
[9]   Local rigidity of restrictions of Weyl chamber flows [J].
Damjanovic, Danijela ;
Katok, Anatole .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (08) :503-508
[10]   Local Rigidity of Partially Hyperbolic Actions. II: The Geometric Method and Restrictions of Weyl Chamber Flows on SL(n, R)/Γ [J].
Damjanovic, Danijela ;
Katok, Anatole .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (19) :4405-4430