ConfocalVR: Immersive Visualization for Confocal Microscopy

被引:36
作者
Stefani, Caroline [1 ]
Lacy-Hulbert, Adam [1 ]
Skillman, Thomas [1 ,2 ]
机构
[1] Virginia Mason, Benaroya Res Inst, 1201 Ninth Ave, Seattle, WA 98101 USA
[2] Immers Sci LLC, Newcastle, WA 98056 USA
基金
美国国家卫生研究院;
关键词
cellular visualization; confocal microscopy; ImageJ; virtual collaboration; virtual reality;
D O I
10.1016/j.jmb.2018.06.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ConfocalVR is a virtual reality (VR) application created to improve the ability of researchers to study the complexity of cell architecture. Confocal microscopes take pictures of fluorescently labeled proteins or molecules at different focal planes to create a stack of two-dimensional images throughout the specimen. Current software applications reconstruct the three-dimensional (3D) image and render it as a two-dimensional projection onto a computer screen where users need to rotate the image to expose the full 3D structure. This process is mentally taxing, breaks down if you stop the rotation, and does not take advantage of the eye's full field of view. ConfocalVR exploits consumer-grade VR systems to fully immerse the user in the 3D cellular image. In this virtual environment, the user can (1) adjust image viewing parameters without leaving the virtual space, (2) reach out and grab the image to quickly rotate and scale the image to focus on key features, and (3) interact with other users in a shared virtual space enabling real-time collaborative exploration and discussion. We found that immersive VR technology allows the user to rapidly understand cellular architecture and protein or molecule distribution. We note that it is impossible to understand the value of immersive visualization without experiencing it first hand, so we encourage readers to get access to a VR system, download this software, and evaluate it for yourself. The ConfocalVR software is available for download at http://www.confocalvr.com,and is free for nonprofits. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:4028 / 4035
页数:8
相关论文
共 8 条
  • [1] αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells
    Acharya, Mridu
    Sokolovska, Anna
    Tam, Jenny M.
    Conway, Kara L.
    Stefani, Caroline
    Raso, Fiona
    Mukhopadhyay, Subhankar
    Feliu, Marianela
    Paul, Elahna
    Savill, John
    Hynes, Richard O.
    Xavier, Ramnik J.
    Vyas, Jatin M.
    Stuart, Lynda M.
    Lacy-Hulbert, Adam
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [2] Bouchard MB, 2015, NAT PHOTONICS, V9, P113, DOI [10.1038/nphoton.2014.323, 10.1038/NPHOTON.2014.323]
  • [3] Fast Inertia-Free Volumetric Light-Sheet Microscope
    Duocastella, Marti
    Sancataldo, Giuseppe
    Saggau, Peter
    Ramoino, Paola
    Bianchini, Paolo
    Diaspro, Alberto
    [J]. ACS PHOTONICS, 2017, 4 (07): : 1797 - 1804
  • [4] UCSF ChimeraX: Meeting modern challenges in visualization and analysis
    Goddard, Thomas D.
    Huang, Conrad C.
    Meng, Elaine C.
    Pettersen, Eric F.
    Couch, Gregory S.
    Morris, John H.
    Ferrin, Thomas E.
    [J]. PROTEIN SCIENCE, 2018, 27 (01) : 14 - 25
  • [5] Technologies for imaging neural activity in large volumes
    Ji, Na
    Freeman, Jeremy
    Smith, Spencer L.
    [J]. NATURE NEUROSCIENCE, 2016, 19 (09) : 1154 - 1164
  • [6] ImageJ2: ImageJ for the next generation of scientific image data
    Rueden, Curtis T.
    Schindelin, Johannes
    Hiner, Mark C.
    DeZonia, Barry E.
    Walter, Alison E.
    Arena, Ellen T.
    Eliceiri, Kevin W.
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [7] Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/NMETH.2019, 10.1038/nmeth.2019]
  • [8] A high-level 3D visualization API for Java']Java and ImageJ
    Schmid, Benjamin
    Schindelin, Johannes
    Cardona, Albert
    Longair, Martin
    Heisenberg, Martin
    [J]. BMC BIOINFORMATICS, 2010, 11