SARS-CoV-2 diagnosis using medical imaging techniques and artificial intelligence: A review

被引:26
作者
Benameur, Narjes [1 ]
Mahmoudi, Ramzi [2 ,3 ]
Zaid, Soraya [4 ]
Arous, Younes [5 ]
Hmida, Badii [6 ]
Bedoui, Mohamed Hedi [2 ]
机构
[1] Univ Tunis El Manar, Higher Inst Med Technol Tunis, Lab Biophys & Med Technol, Tunis, Tunisia
[2] Univ Monastir, Fac Med Monastir, Lab Technol Imagerie Med LTIM LR12ES06, Monastir 5019, Tunisia
[3] Univ Paris Est, Unite Mixte CNRS UMLV ESIEE, Lab Informat Gaspard Monge, ESIEE Paris Cite Descartes,UMR8049, BP99, F-93162 Noisy Le Grand, France
[4] Ctr Hosp Escartons Briancon, Serv Imagerie, Briancon, France
[5] Mil Hosp Instruct Tunis, Radiol Serv, Tunis, Tunisia
[6] CHU Fattouma Bourguiba, Radiol Serv, UR12SP40, Monastir 5019, Tunisia
关键词
SARS-CoV-2; Medical imaging techniques; Artificial intelligence; Clinical findings; Chest CT; COVID-19; PNEUMONIA; CORONAVIRUS;
D O I
10.1016/j.clinimag.2021.01.019
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: SARS-CoV-2 is a worldwide health emergency with unrecognized clinical features. This paper aims to review the most recent medical imaging techniques used for the diagnosis of SARS-CoV-2 and their potential contributions to attenuate the pandemic. Recent researches, including artificial intelligence tools, will be described. Methods: We review the main clinical features of SARS-CoV-2 revealed by different medical imaging techniques. First, we present the clinical findings of each technique. Then, we describe several artificial intelligence approaches introduced for the SARS-CoV-2 diagnosis. Results: CT is the most accurate diagnostic modality of SARS-CoV-2. Additionally, ground-glass opacities and consolidation are the most common signs of SARS-CoV-2 in CT images. However, other findings such as reticular pattern, and crazy paving could be observed. We also found that pleural effusion and pneumothorax features are less common in SARS-CoV-2. According to the literature, the B lines artifacts and pleural line irregularities are the common signs of SARS-CoV-2 in ultrasound images. We have also stated the different studies, focusing on artificial intelligence tools, to evaluate the SARS-CoV-2 severity. We found that most of the reported works based on deep learning focused on the detection of SARS-CoV-2 from medical images while the challenge for the radiologists is how to differentiate between SARS-CoV-2 and other viral infections with the same clinical features. Conclusion: The identification of SARS-CoV-2 manifestations on medical images is a key step in radiological workflow for the diagnosis of the virus and could be useful for researchers working on computer-aided diagnosis of pulmonary infections.
引用
收藏
页码:6 / 14
页数:9
相关论文
共 89 条
[1]   Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network [J].
Abbas, Asmaa ;
Abdelsamea, Mohammed M. ;
Gaber, Mohamed Medhat .
APPLIED INTELLIGENCE, 2021, 51 (02) :854-864
[2]   Pleural Effusion: Characterization with CT Attenuation Values and CT Appearance [J].
Abramowitz, Yigal ;
Simanovsky, Natalia ;
Goldstein, Michael S. ;
Hiller, Nurith .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 192 (03) :618-623
[3]  
Ai T, 2019, Radiology, DOI [10.1148/radiol.2020200642, 10.26434/chemrxiv.11860137.v1, DOI 10.1148/RADIOL.2020200642]
[4]   SARS-CoV-2 Vaccines: Status Report [J].
Amanat, Fatima ;
Krammer, Florian .
IMMUNITY, 2020, 52 (04) :583-589
[5]   The proximal origin of SARS-CoV-2 [J].
Andersen, Kristian G. ;
Rambaut, Andrew ;
Lipkin, W. Ian ;
Holmes, Edward C. ;
Garry, Robert F. .
NATURE MEDICINE, 2020, 26 (04) :450-452
[6]  
[Anonymous], PEDIATR MED RODZ
[7]   Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks [J].
Apostolopoulos, Ioannis D. ;
Mpesiana, Tzani A. .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (02) :635-640
[8]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[9]   Severe acute respiratory syndrome (SARS): chest radiographic features in children [J].
Babyn, PS ;
Chu, WCW ;
Tsou, IYY ;
Wansaicheong, GKL ;
Allen, U ;
Bitnun, A ;
Chee, TSG ;
Cheng, FWT ;
Chiu, MC ;
Fok, TF ;
Hon, EKL ;
Gahunia, HK ;
Kaw, GJL ;
Khong, PL ;
Leung, CW ;
Li, AM ;
Manson, D ;
Metreweli, C ;
Ng, PC ;
Read, S ;
Stringer, DA .
PEDIATRIC RADIOLOGY, 2004, 34 (01) :47-58
[10]  
Carter M, 2015, GUIDE RES TECHNIQUES, VSecond