Enhancement of spontaneous emission in Tamm plasmon structures

被引:54
作者
Gubaydullin, A. R. [1 ,2 ]
Symonds, C. [2 ]
Bellessa, J. [2 ]
Ivanov, K. A. [1 ,3 ]
Kolykhalova, E. D. [1 ,4 ]
Sasin, M. E. [4 ]
Lemaitre, A. [5 ]
Senellart, P. [5 ]
Pozina, G. [6 ]
Kaliteevski, M. A. [1 ,3 ,4 ]
机构
[1] St Petersburg Acad Univ, 8-3 Khlopina Str, St Petersburg 194021, Russia
[2] Univ Claude Bernard Lyon 1, CNRS, Inst Lumiere Matiere, F-69622 Lyon, France
[3] ITMO Univ, 49 Kronverksky Pr, St Petersburg 197101, Russia
[4] Ioffe Inst, 26 Politekhn Skaya, St Petersburg 194021, Russia
[5] Univ Paris Saclay, CNRS, Ctr Nanosci & Nanotechnol, Route Nozay, F-91460 Marcoussis, France
[6] Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden
基金
俄罗斯科学基金会;
关键词
D O I
10.1038/s41598-017-09245-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It was theoretically and experimentally demonstrated that in metal/semiconductor Tamm plasmon structures the probability of spontaneous emission can be increased despite losses in metal, and theoretical analysis of experimental results suggested that the enhancement could be as high as one order of magnitude. Tamm plasmon structure with quantum dots has been fabricated and the emission pattern has been measured. Electromagnetic modes of the structure have been analyzed and modification of spontaneous emission rates has been calculated showing a good agreement with experimentally observed emission pattern.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity [J].
Askitopoulos, A. ;
Mouchliadis, L. ;
Iorsh, I. ;
Christmann, G. ;
Baumberg, J. J. ;
Kaliteevski, M. A. ;
Hatzopoulos, Z. ;
Savvidis, P. G. .
PHYSICAL REVIEW LETTERS, 2011, 106 (07)
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs [J].
Baryshev, A. V. ;
Merzlikin, A. M. .
APPLIED OPTICS, 2014, 53 (14) :3142-3146
[4]   Plasmonics for future biosensors [J].
Brolo, Alexandre G. .
NATURE PHOTONICS, 2012, 6 (11) :709-713
[5]  
Brückner R, 2012, NAT PHOTONICS, V6, P322, DOI [10.1038/NPHOTON.2012.49, 10.1038/nphoton.2012.49]
[6]   Photocurrent and capacitance spectroscopy of Schottky barrier structures incorporating InAs/GaAs quantum -: art. no. 085326 [J].
Brunkov, PN ;
Patanè, A ;
Levin, A ;
Eaves, L ;
Main, PC ;
Musikhin, YG ;
Volovik, BV ;
Zhukov, AE ;
Ustinov, VM ;
Konnikov, SG .
PHYSICAL REVIEW B, 2002, 65 (08) :1-6
[7]   Smallest possible electromagnetic mode volume in a dielectric cavity [J].
Coccioli, R ;
Boroditsky, M ;
Kim, KW ;
Rahmat-Samii, Y ;
Yablonovitch, E .
IEE PROCEEDINGS-OPTOELECTRONICS, 1998, 145 (06) :391-397
[8]   SPONTANEOUS EMISSION IN THE OPTICAL MICROSCOPIC CAVITY [J].
DEMARTINI, F ;
MARROCCO, M ;
MATALONI, P ;
CRESCENTINI, L ;
LOUDON, R .
PHYSICAL REVIEW A, 1991, 43 (05) :2480-2497
[9]   Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature [J].
Ding, K. ;
Hill, M. T. ;
Liu, Z. C. ;
Yin, L. J. ;
van Veldhoven, P. J. ;
Ning, C. Z. .
OPTICS EXPRESS, 2013, 21 (04) :4728-4733
[10]   RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE [J].
FLEISCHMANN, M ;
HENDRA, PJ ;
MCQUILLAN, AJ .
CHEMICAL PHYSICS LETTERS, 1974, 26 (02) :163-166