KIOPS: A fast adaptive Krylov subspace solver for exponential integrators

被引:54
作者
Gaudreault, Stephane [1 ]
Rainwater, Greg [2 ]
Tokman, Mayya [2 ]
机构
[1] Environm & Changement Climat Canada, Rech Previs Numer Atmospher, 2121 Route Transcanadienne, Dorval, PQ H9P 1J3, Canada
[2] Univ Calif, Sch Nat Sci, 5200 N Lake Rd, Merced, CA 95343 USA
基金
美国国家科学基金会;
关键词
Adaptive Krylov subspace methods; Incomplete orthogonalization; Time integration; Exponential integrators; phi-functions; Matrix exponential; PROPAGATION ITERATIVE METHODS; TIME INTEGRATION; MATRIX; APPROXIMATIONS; IMPLEMENTATION; INSTABILITIES; EQUATIONS; SCHEMES; PARAEXP; SYSTEMS;
D O I
10.1016/j.jcp.2018.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a new algorithm KIOPS for computing linear combinations of phi-functions that appear in exponential integrators. This algorithm is suitable for large-scale problems in computational physics where little or no information about the spectrum or norm of the Jacobian matrix is known a priori. We first show that such problems can be solved efficiently by computing a single exponential of a modified matrix. Then our approach is to compute an appropriate basis for the Krylov subspace using the incomplete orthogonalization procedure and project the matrix exponential on this subspace. We also present a novel adaptive procedure that significantly reduces the computational complexity of exponential integrators. Our numerical experiments demonstrate that KIOPS outperforms the current state-of-the-art adaptive Krylov algorithm phipm. Crown Copyright (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:236 / 255
页数:20
相关论文
共 54 条
[1]   Implementation of a restarted Krylov subspace method for the evaluation of matrix functions [J].
Afanasjew, Martin ;
Eiermann, Michael ;
Ernst, Oliver G. ;
Guettel, Stefan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (10) :2293-2314
[2]   COMPUTING THE ACTION OF THE MATRIX EXPONENTIAL, WITH AN APPLICATION TO EXPONENTIAL INTEGRATORS [J].
Al-Mohy, Awad H. ;
Higham, Nicholas J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02) :488-511
[3]  
[Anonymous], 205 NORW U SCI TECHN
[4]  
Bates PW, 2009, INT J NUMER ANAL MOD, V6, P33
[5]   A new class of time discretization schemes for the solution of nonlinear PDEs [J].
Beylkin, G ;
Keiser, JM ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :362-387
[6]   A block Krylov subspace time-exact solution method for linear ordinary differential equation systems [J].
Botchev, M. A. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (04) :557-574
[7]   RESIDUAL, RESTARTING, AND RICHARDSON ITERATION FOR THE MATRIX EXPONENTIAL [J].
Botchev, Mike A. ;
Grimm, Volker ;
Hochbruck, Marlis .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) :A1376-A1397
[8]   THE LEJA METHOD REVISITED: BACKWARD ERROR ANALYSIS FOR THE MATRIX EXPONENTIAL [J].
Caliari, Marco ;
Kandolf, Peter ;
Ostermann, Alexander ;
Rainer, Stefan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03) :A1639-A1661
[9]   Implementation of exponential Rosenbrock-type integrators [J].
Caliari, Marco ;
Ostermann, Alexander .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (3-4) :568-581
[10]   On the use of exponential time integration methods in atmospheric models [J].
Clancy, Colm ;
Pudykiewicz, Janusz A. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2013, 65