Continuous-variable quantum identity authentication based on quantum teleportation

被引:34
作者
Ma, Hongxin [1 ,2 ]
Huang, Peng [3 ]
Bao, Wansu [1 ,2 ]
Zeng, Guihua [3 ]
机构
[1] Zhengzhou Informat Sci & Technol Inst, Zhengzhou 450001, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Elect Engn, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Continuous-variable; Identity authentication; Quantum cryptography; Quantum teleportation; KEY DISTRIBUTION; UNCONDITIONAL SECURITY;
D O I
10.1007/s11128-016-1283-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A continuous-variable quantum identity authentication protocol, which is based on quantum teleportation, is presented by employing two-mode squeezed vacuum state and coherent state. The proposed protocol can verify user's identity efficiently with a new defined fidelity parameter. Update of authentication key can also be implemented in our protocol. Moreover, the analysis shows its feasibility and security under the general Gaussian-cloner attack on authentication key, which is guaranteed by quantum entanglement, insertion of decoy state and random displacement.
引用
收藏
页码:2605 / 2620
页数:16
相关论文
共 36 条
[1]  
Bennet C. H., 1984, P IEEE INT C COMP SY, V175
[2]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[3]   Cloning of continuous quantum variables [J].
Cerf, NJ ;
Ipe, A ;
Rottenberg, X .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1754-1757
[4]   Quantum distribution of Gaussian keys using squeezed states -: art. no. 052311 [J].
Cerf, NJ ;
Lévy, M ;
Van Assche, G .
PHYSICAL REVIEW A, 2001, 63 (05) :523111-523115
[5]   Quantum identification system [J].
Dusek, M ;
Haderka, O ;
Hendrych, M ;
Myska, R .
PHYSICAL REVIEW A, 1999, 60 (01) :149-156
[6]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[7]   Continuous-Variable Quantum Key Distribution Protocols Over Noisy Channels [J].
Garcia-Patron, Raul ;
Cerf, Nicolas J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[8]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[9]   A continuous variable quantum deterministic key distribution based on two-mode squeezed states [J].
Gong, Li-Hua ;
Song, Han-Chong ;
He, Chao-Sheng ;
Liu, Ye ;
Zhou, Nan-Run .
PHYSICA SCRIPTA, 2014, 89 (03)
[10]   Quantum key distribution using gaussian-modulated coherent states [J].
Grosshans, F ;
Van Assche, G ;
Wenger, J ;
Brouri, R ;
Cerf, NJ ;
Grangier, P .
NATURE, 2003, 421 (6920) :238-241