Fabrication and Superplastic Deformation of Al2O3/YSZ/MgAl2O4 Composite Ceramic

被引:2
作者
Chen Guoqing [1 ]
Zu Yufei [1 ]
Xie Jie [1 ]
Fu Xuesong [1 ]
机构
[1] Dalian Univ Technol, Sch Mat Sci & Engn, Dalian 116085, Peoples R China
来源
CHINESE CERAMICS COMMUNICATIONS | 2010年 / 105-106卷
关键词
Al(2)O(3)/YSZ/MgAl(2)O(4) composite; microstructure; superplastic forming;
D O I
10.4028/www.scientific.net/AMR.105-106.188
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High strain rate superplastic forming is the key issue of the industrial application of superplastic ceramic and is also an effective approach to achieve "near-net shaping" of ceramic parts with complicated shape. The sol-gel method was adapted to synthesize the nano-sized composite powders. A three-phase nanocomposite ceramic Al(2)O(3)-30mol%YSZ-30mol%MgAl(2)O(4) (AZ30S30) was prepared by using hot-pressing sintering in vacuum. Then the superplastic forming of a ceramic part with relatively complicated shape was accomplished and some new characters in superplastic forming were studied. The results demonstrate that as-sintered ceramic is a typical inter/intra granular nano-structured composite. Because the dispersed second phase inhibited the growth of the alumina matrix grains in deformation as well as in sintering, the material behaves excellent superplastic formability. The extrusion forming at a high strain rate was achieved and the part in cup shape was obtained. The yttrium element segregated obviously at the grain boundary after deformation, which demonstrated that the yttrium element directionally diffused during the deformation. The mechanical properties of the ceramic did not change much after extrusion. The maximum hardness of as-deformed composite ceramic is 32GPa, a litter lower than that of 35GPa before deformation.
引用
收藏
页码:188 / 191
页数:4
相关论文
共 50 条
  • [41] Deformation behaviour and microstructure of a 20% Al2O3 reinforced 6061 Al composite
    Xia X.
    McQueen H.J.
    Applied Composite Materials, 1997, 4 (5) : 333 - 347
  • [42] Deformation behaviour and microstructure of a 20% Al2O3 reinforced 6061 Al composite
    Xiaoxin Xia
    H. J. McQueen
    Applied Composite Materials, 1997, 4 : 333 - 347
  • [43] Microstructural Aspects of the Fabrication of Al/Al2O3 Composite by Friction Stir Processing
    Malopheyev, Sergey S.
    Zuiko, Ivan S.
    Mironov, Sergey Yu.
    Kaibyshev, Rustam O.
    MATERIALS, 2023, 16 (07)
  • [44] Synthesis of MgAl2O4 Spinel in a Thermal Plasma
    Shekhovtsov, V. V.
    Skripnikova, N. K.
    Ulmasov, A. B.
    INORGANIC MATERIALS, 2023, 59 (08) : 851 - 857
  • [45] Fabrication and Characterization of Al2O3/GdAlO3 Eutectic Ceramic in situ Composite by Laser Zone Remelting
    Su, Haijun
    Zhang, Jun
    Jiao, Sha
    Liu, Lin
    Fu, Hengzhi
    MATERIALS SCIENCE AND ENGINEERING APPLICATIONS, PTS 1-3, 2011, 160-162 : 773 - 776
  • [46] Synthesis of MgAl2O4 Spinel in a Thermal Plasma
    V. V. Shekhovtsov
    N. K. Skripnikova
    A. B. Ulmasov
    Inorganic Materials, 2023, 59 : 851 - 857
  • [47] Effect of Al2O3 Content on Electrical Breakdown Properties of Al2O3/Cu Composite
    Wang, Xianhui
    Liang, Shuhua
    Yang, Ping
    Fan, Zikang
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2010, 19 (09) : 1330 - 1336
  • [48] Influence of Al2O3 addition on microstructure and mechanical properties of 3YSZ-Al2O3 composites
    Abden, Jaynul
    Afroze, Jannatul Dil
    Gafur, Abdul
    Chowdhury, Faruque-Uz-Zaman
    MATERIALS TESTING, 2015, 57 (06) : 499 - 505
  • [49] The influence of the molar ratio of Al2O3 to Y2O3 on sintering behavior and the mechanical properties of a SiC-Al2O3-Y2O3 ceramic composite
    Zhang, N.
    Ru, H. Q.
    Cai, Q. K.
    Sun, X. D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 486 (1-2): : 262 - 266
  • [50] Effect of YSZ with different Y2O3 contents on toughening behavior of Al2O3/Ba-β-Al2O3/ZrO2 composites
    Liu, Lei
    Maeda, Kensaku
    Onda, Tetsuhiko
    Chen, Zhong-Chun
    CERAMICS INTERNATIONAL, 2019, 45 (14) : 18037 - 18043