K2Na(IO3)2(I3O8) with Strong Second Harmonic Generation Response Activated by Two Types of Isolated Iodate Anions

被引:38
作者
Abudouwufu, Tushagu [1 ]
Zhang, Min [1 ,2 ]
Cheng, Shichao [1 ]
Zeng, Hao [1 ]
Yang, Zhihua [1 ,2 ]
Pan, Shilie [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Funct Mat & Devices Special Environm, Xinjiang Tech Inst Phys & Chem, Xinjiang Key Lab Elect Informat Mat & Devices, Urumqi 830011, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR-OPTICAL MATERIALS; POLAR MATERIAL; LONE-PAIRS; CRYSTAL; FRAMEWORK; FLUORIDE; RB; CONDENSATION; EXPLORATIONS; LA(IO3)(3);
D O I
10.1021/acs.chemmater.0c00878
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new alkali metal iodate, K2Na(IO3)(2)(I3O8), has been synthesized using the mild hydrothermal method, which is the first example of noncentrosymmetric iodate containing isolated [IO3](-) and [I3O8](-) groups. To the best of our knowledge, it exhibits the largest second harmonic generation response among the iodates with two types of isolated I-O groups (7.6 X KH2 PO4 (KDP) @1064 nm). It also possesses a moderate birefringence (Delta n) of 0.055 at 1064 nm for achieving its phase matching and a wide band gap (3.83 eV) for obtaining a high laser damage threshold, which assures that it possesses a high laser-induced damage threshold (LDT, 13 X AgGaS2). These results indicate that it is a good candidate for nonlinear optical applications.
引用
收藏
页码:3608 / 3614
页数:7
相关论文
共 79 条
  • [31] Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting
    Kibria, M. G.
    Zhao, S.
    Chowdhury, F. A.
    Wang, Q.
    Nguyen, H. P. T.
    Trudeau, M. L.
    Guo, H.
    Mi, Z.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [32] Kubelka P, 1931, Z. Tech. Phys, V12, P593, DOI DOI 10.4236/MSCE.2014.28004
  • [33] A POWDER TECHNIQUE FOR EVALUATION OF NONLINEAR OPTICAL MATERIALS
    KURTZ, SK
    PERRY, TT
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1968, QE 4 (05) : 333 - +
  • [34] New strategy for designing promising mid-infrared nonlinear optical materials: narrowing the band gap for large nonlinear optical efficiencies and reducing the thermal effect for a high laser-induced damage threshold
    Li, Shu-Fang
    Jiang, Xiao-Ming
    Fan, Yu-Hang
    Liu, Bin-Wen
    Zeng, Hui-Yi
    Guo, Guo-Cong
    [J]. CHEMICAL SCIENCE, 2018, 9 (26) : 5700 - 5708
  • [35] Two Polar Molybdenum(VI) lodates(V) with Large Second-Harmonic Generation Responses
    Li, Yahui
    Han, Guopeng
    Yu, Hongwei
    Li, Hao
    Yang, Zhihua
    Pan, Shilie
    [J]. CHEMISTRY OF MATERIALS, 2019, 31 (08) : 2992 - 3000
  • [36] CsAlB3O6F: a beryllium-free deep-ultraviolet nonlinear optical material with enhanced thermal stability
    Liu, Hongkun
    Wang, Ying
    Zhang, Bingbing
    Yang, Zhihua
    Pan, Shilie
    [J]. CHEMICAL SCIENCE, 2020, 11 (03) : 694 - 698
  • [37] ABi2(IO3)2F5 (A = K, Rb, and Cs): ACombination of Halide and Oxide Anionic Units To Create a Large Second-Harmonic Generation Response with a Wide Bandgap
    Liu, Hongming
    Wu, Qi
    Jiang, Xingxing
    Lin, Zheshuai
    Meng, Xianggao
    Chen, Xingguo
    Qin, Jingui
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (32) : 9492 - 9496
  • [38] Na8Lu2(CO3)6F2 and Na3Lu(CO3)2F2: Rare Earth Fluoride Carbonates as Deep-UV Nonlinear Optical Materials
    Luo, Min
    Ye, Ning
    Zou, Guohong
    Lin, Chensheng
    Cheng, Wendan
    [J]. CHEMISTRY OF MATERIALS, 2013, 25 (15) : 3147 - 3153
  • [39] HBa2.5(IO3)6(I2O5) and HBa(IO3)(I4O11): Explorations of Second-Order Nonlinear Optical Materials in the Alkali-Earth Polyiodate System
    Mao, Fei-Fei
    Hu, Chun-Li
    Chen, Jin
    Wu, Bao-Lin
    Mao, Jiang-Gao
    [J]. INORGANIC CHEMISTRY, 2019, 58 (06) : 3982 - 3989
  • [40] Acentric La3(IO3)8(OH) and La(IO3)2(NO3): Partial Substitution of Iodate Anions in La(IO3)3 by Hydroxide or Nitrate Anion
    Mao, Fei-Fei
    Hu, Chun-Li
    Li, Bing-Xuan
    Mao, Jiang-Gao
    [J]. INORGANIC CHEMISTRY, 2017, 56 (22) : 14357 - 14365