Order parameter and detection for a finite ensemble of crystallized one-dimensional dipolar bosons in optical lattices

被引:31
作者
Chatterjee, Budhaditya [1 ]
Lode, Axel U. J. [2 ,3 ,4 ]
机构
[1] Indian Inst Technol Kanpur, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[2] Univ Vienna, Fac Math, Wolfgang Pauli Inst, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] TU Wien, Vienna Ctr Quantum Sci & Technol, Atominst, Stadionallee 2, A-1020 Vienna, Austria
[4] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
基金
奥地利科学基金会;
关键词
BOSE-EINSTEIN CONDENSATION; QUANTUM; GAS; REALIZATION; SIMULATIONS; SYSTEMS; ATOMS;
D O I
10.1103/PhysRevA.98.053624
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the ground-state properties of a few bosons with dipole-dipole interactions in a one-dimensional optical lattice. For comparatively strong interactions, a transition from a Mott-insulator state to a crystal state occurs. Herein, we provide a detailed characterization and a detection protocol for the resulting crystal state. Using the eigenvalues of the reduced one-body density matrix, we define an order parameter that characterizes all the emergent states occurring in the finite-sized ensemble and agrees with the signatures obtained from the analysis of the one- and two-body densities. We further demonstrate that these few-body emergent states can be detected experimentally using the variance of single-shot measurements.
引用
收藏
页数:8
相关论文
共 71 条
[1]   Bose-Einstein Condensation of Erbium [J].
Aikawa, K. ;
Frisch, A. ;
Mark, M. ;
Baier, S. ;
Rietzler, A. ;
Grimm, R. ;
Ferlaino, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[2]   Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices [J].
Alon, OE ;
Streltsov, AI ;
Cederbaum, LS .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)
[3]   Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2008, 77 (03)
[4]   Ground-state properties of a one-dimensional system of dipoles [J].
Arkhipov, AS ;
Astrakharchik, GE ;
Belikov, AV ;
Lozovik, YE .
JETP LETTERS, 2005, 82 (01) :39-43
[5]   Super-Tonks-Girardeau regime in trapped one-dimensional dipolar gases [J].
Astrakharchik, G. E. ;
Lozovik, Yu. E. .
PHYSICAL REVIEW A, 2008, 77 (01)
[6]   Ground state of low-dimensional dipolar gases: Linear and zigzag chains [J].
Astrakharchik, G. E. ;
Morigi, Giovanna ;
De Chiara, Gabriele ;
Boronat, J. .
PHYSICAL REVIEW A, 2008, 78 (06)
[7]   Theoretical progress in many-body physics with ultracold dipolar gases [J].
Baranov, M. A. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 464 (03) :71-111
[8]   All-optical production of chromium Bose-Einstein condensates [J].
Beaufils, Q. ;
Chicireanu, R. ;
Zanon, T. ;
Laburthe-Tolra, B. ;
Marechal, E. ;
Vernac, L. ;
Keller, J. -C. ;
Gorceix, O. .
PHYSICAL REVIEW A, 2008, 77 (06)
[9]   Correlation versus commensurability effects for finite bosonic systems in one-dimensional lattices [J].
Brouzos, Ioannis ;
Zollner, Sascha ;
Schmelcher, Peter .
PHYSICAL REVIEW A, 2010, 81 (05)
[10]   Quantum Phases of a Two-Dimensional Dipolar Fermi Gas [J].
Bruun, G. M. ;
Taylor, E. .
PHYSICAL REVIEW LETTERS, 2008, 101 (24)