An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination

被引:1
作者
Ndiaye, S. M. [1 ]
Parilina, E. M. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
来源
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA | 2022年 / 18卷 / 02期
关键词
epidemic model; human population; malaria; sub-populations; modification epidemic SEIR model; reproductive number; endemic equilibrium; DYNAMICS;
D O I
10.21638/11701/spbul0.2022.207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a mathematical model of the malaria epidemic in the human population (host), where the transmission of the disease is produced by a vector population (mosquito) known as the malaria mosquito. The malaria epidemic model is defined by a system of ordinary differential equations. The host population at any time is divided into four sub-populations: susceptible, exposed, infectious, recovered. Sufficient conditions for stability of equilibrium without disease and endemic equilibrium are obtained using the Lyapunov's function theory. We define the reproductive number characterizing the level of disease spreading in the human population. Numerical modeling is made to study the influence of parameters on the spread of vector -borne disease and to illustrate theoretical results, as well as to analyze possible behavioral scenarios.
引用
收藏
页码:263 / 277
页数:15
相关论文
共 24 条
  • [1] A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes' Biased Distribution and Mosquito Repellent Use
    Aldila, Dipo
    Seno, Hiromi
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2019, 81 (12) : 4977 - 5008
  • [2] Permanence conditions for models of population dynamics with switches and delay
    Aleksandrov, A. Yu
    [J]. VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2020, 16 (02): : 88 - 99
  • [3] Impact of Seasonal Conditions on Vector-Borne Epidemiological Dynamics
    Arquam, Md
    Singh, Anurag
    Cherifi, Hocine
    [J]. IEEE ACCESS, 2020, 8 : 94510 - 94525
  • [4] Stochastic epidemic models: A survey
    Britton, Tom
    [J]. MATHEMATICAL BIOSCIENCES, 2010, 225 (01) : 24 - 35
  • [5] Within-host competition can delay evolution of drug resistance in malaria
    Bushman, Mary
    Antia, Rustom
    Udhayakumar, Venkatachalam
    de Roode, Jacobus C.
    [J]. PLOS BIOLOGY, 2018, 16 (08):
  • [6] Chang SL, 2020, J BIOL DYNAM, V14, P57, DOI [10.1080/17513758.2020.1720322, 10.22649/JBAM.2020.14.1.57]
  • [7] Derdei B., 2013, THESIS HAL, P7
  • [8] Competitive exclusion in a vector-host model for the Dengue fever
    Feng, ZL
    VelascoHernandez, JX
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (05) : 523 - 544
  • [9] Gomez-Hernandez E. A, 2019, J. Phy s.: Conference Series, V1408
  • [10] Implications of Stochastic Transmission Rates for Managing Pandemic Risks
    Hong, Harrison
    Wang, Neng
    Yang, Jinqiang
    [J]. REVIEW OF FINANCIAL STUDIES, 2021, 34 (11) : 5224 - 5265