Macrophage metabolism in atherosclerosis

被引:128
作者
Bories, Gael F. P.
Leitinger, Norbert [1 ,2 ]
机构
[1] Univ Virginia, Dept Pharmacol, 1340 Jefferson Pk Ave,Pinn Hall, Charlottesville, VA 22908 USA
[2] Univ Virginia, Robert M Berne Cardiovasc Res Ctr, 1340 Jefferson Pk Ave,Pinn Hall, Charlottesville, VA 22908 USA
关键词
atherosclerosis; macrophage; metabolism; ACTIVATED PROTEIN-KINASE; HYPOXIA-INDUCIBLE FACTOR; FOAM CELL-FORMATION; FATTY-ACID OXIDATION; APOPTOTIC CELLS; NITRIC-OXIDE; ALTERNATIVE ACTIVATION; CARDIOVASCULAR-DISEASE; GENE-EXPRESSION; FRUCTOSE 2,6-BISPHOSPHATE;
D O I
10.1002/1873-3468.12786
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A key aspect of atherosclerosis is the maladaptive inflammatory response to lipoprotein accumulation in the artery. The failure to decrease lipid accumulation, to clear apoptotic cells, and to resolve inflammation ultimately leads to macrophage accumulation within the vascular wall [Thorp EB (2010) Apoptosis 15, 1124-1136; Moore K etal. (2013) Nat Rev Immunol 13, 709-721; Moore KJ and Tabas I (2011) Cell 145, 341-355; Ley K etal. (2011) Arterioscler Thromb Vasc Biol 31, 1506-1516]. Several subsets of macrophages are found inside atherosclerotic plaques [Chinetti-Gbaguidi G etal. (2015) Nat Rev Cardiol 12, 10-17; Leitinger N and Schulman IG (2013) Arterioscler Thromb Vasc Biol 33, 1120-1126; Mantovani A etal. (2009) Arterioscler Thromb Vasc Biol 29, 1419-1423]: Proinflammatory M1-like macrophages potentially participate in atherosclerosis initiation and progression; M2-like macrophages are thought to be protective due to their anti-inflammatory and profibrotic properties, presumably stabilizing the plaque [Chistiakov DA etal. (2015) Int J Cardiol 184, 436-445; Gordon S (2003) Nat Rev Immunol 3, 23-35]; Mox macrophages develop in response to oxidized phospholipids and present a glutathione- and potentially redox-regulating phenotype [Kadl A etal. (2010) Circ Res 107, 737-746]; Mhem macrophages are found in areas of plaque hemorrhage [Boyle JJ etal. (2009) Am J Pathol 174, 1097-1108; Boyle JJ etal. (2012) Circ Res 110, 20-33] where they are involved in heme clearance. Recent evidence suggests that the relative abundance of these macrophage subsets is a better indicator of plaque progression and stability than the total number of lesion macrophages [Chinetti-Gbaguidi G etal. (2015) Nat Rev Cardiol 12, 10-17]. Over the last few years, findings in the area of immunometabolism established a link between the metabolic state of the different macrophage phenotypes and their functions [O'Neill LAJ and Pearce EJ (2016) J Exp Med 213, 15-23]. However, the effect of metabolic changes in macrophages on atherosclerotic plaque progression and stability is not well understood and an area of intensive study. In this review, we will summarize and critically discuss recent developments in the field of macrophage metabolism in the context of atherosclerosis to guide future investigation in this area.
引用
收藏
页码:3042 / 3060
页数:19
相关论文
共 182 条
[1]   Hypoxia-Inducible Factor-1 Expression in Macrophages Promotes Development of Atherosclerosis [J].
Aarup, Annemarie ;
Pedersen, Tanja X. ;
Junker, Nanna ;
Christoffersen, Christina ;
Bartels, Emil D. ;
Madsen, Marie ;
Nielsen, Carsten H. ;
Nielsen, Lars B. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2016, 36 (09) :1782-1790
[2]   Disruption of Mammalian Target of Rapamycin Complex 1 in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis [J].
Ai, Ding ;
Jiang, Hongfeng ;
Westerterp, Marit ;
Murphy, Andrew J. ;
Wang, Mi ;
Ganda, Anjali ;
Abramowicz, Sandra ;
Welch, Carrie ;
Almazan, Felicidad ;
Zhu, Yi ;
Miller, Yury I. ;
Tall, Alan R. .
CIRCULATION RESEARCH, 2014, 114 (10) :1576-1584
[3]   Hypoxia causes an increase in phagocytosis by macrophages in a HIF-1α-dependent manner [J].
Anand, Rahul J. ;
Gribar, Steven C. ;
Li, Jun ;
Kohler, Jeff W. ;
Branca, Maria F. ;
Dubowski, Theresa ;
Sodhi, Chhinder P. ;
Hackam, David J. .
JOURNAL OF LEUKOCYTE BIOLOGY, 2007, 82 (05) :1257-1265
[4]   Phagocytosis of apoptotic cells in homeostasis [J].
Arandjelovic, Sanja ;
Ravichandran, Kodi S. .
NATURE IMMUNOLOGY, 2015, 16 (09) :907-917
[5]   AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils [J].
Bae, Hong-Beom ;
Zmijewski, Jaroslaw W. ;
Deshane, Jessy S. ;
Tadie, Jean-Marc ;
Chaplin, David D. ;
Takashima, Seiji ;
Abraham, Edward .
FASEB JOURNAL, 2011, 25 (12) :4358-4368
[6]   Everolimus Inhibits Monocyte/Macrophage Migration in Vitro and Their Accumulation in Carotid Lesions of Cholesterol-Fed Rabbits [J].
Baetta, Roberta ;
Granata, Agnese ;
Canavesi, Monica ;
Ferri, Nicola ;
Arnaboldi, Lorenzo ;
Bellosta, Stefano ;
Pfister, Pascal ;
Corsini, Alberto .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2009, 328 (02) :419-425
[7]   Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production [J].
Baseler, Walter A. ;
Davies, Luke C. ;
Quigley, Laura ;
Ridnour, Lisa A. ;
Weiss, Jonathan M. ;
Hussain, S. Perwez ;
Wink, David A. ;
McVicar, Daniel W. .
REDOX BIOLOGY, 2016, 10 :12-23
[8]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[9]  
Berg J.M., 2002, Oxidative Phosphorylation, V5
[10]   A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma [J].
Bergmark, Claes ;
Dewan, Asheesh ;
Orsoni, Alexina ;
Merki, Esther ;
Miller, Elizabeth R. ;
Shin, Min-Jeong ;
Binder, Christoph J. ;
Horkko, Sohvi ;
Krauss, Ronald M. ;
Chapman, M. John ;
Witztum, Joseph L. ;
Tsimikas, Sotirios .
JOURNAL OF LIPID RESEARCH, 2008, 49 (10) :2230-2239