Study of a numerical approach for a transient flow problem in porous media

被引:0
作者
Chakib, A
Ghemires, T
Nachaoui, A
机构
[1] Univ Nantes, CNRS, UMR 6629, Lab Math Jean Leray, F-44322 Nantes, France
[2] Univ Cadi Ayyad, Fac Sci & Tech Beni Mellal, Dept Math Appl & Informat, Beni Mellal, Morocco
[3] Univ Mohammed 5, Fac Sci, Dept Math & Informat, Rabat, Morocco
关键词
transient flow; dam in porous media; time discretization; optimal shape; finite element;
D O I
10.1023/B:NUMA.0000005403.59451.61
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we deal with the numerical study of the new approximation method proposed in [7] for a transient flow problem in porous media. The stationary problem, obtained from a time discretization of this transient problem, is considered as an optimal shape design formulation. We prove the existence of the solution of the discrete optimal shape problem obtained from finite element discretization. We study the convergence and give numerical results showing the efficiency of the proposed approach.
引用
收藏
页码:229 / 243
页数:15
相关论文
共 21 条
  • [1] ABUSHOV OG, 1995, RUSSIAN MATH, V39, P9
  • [2] BAER J, 1972, DYNAMICS FLUIDS PORO
  • [3] BAIOCCHI C, 1973, ANN MAT PUR APPL, V96, P1
  • [4] Bear J., 1987, MODELING GROUNDWATER
  • [5] BREZIS H, 1978, CR ACAD SCI A MATH, V287, P711
  • [6] ON THE DAM PROBLEM
    CARRILLOMENENDEZ, J
    CHIPOT, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 45 (02) : 234 - 271
  • [7] An optimal shape design formulation for inhomogeneous dam problems
    Chakib, A
    Ghemires, T
    Nachaoui, A
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (06) : 473 - 489
  • [8] An optimal shape design approach for the transient flow in the dam problem
    Chakib, A
    Ghemires, T
    Nachaoui, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (12): : 1005 - 1010
  • [9] AN EFFICIENT METHOD FOR THE FREE-SURFACE SEEPAGE FLOW PROBLEMS
    CHENG, YM
    TSUI, Y
    [J]. COMPUTERS AND GEOTECHNICS, 1993, 15 (01) : 47 - 62
  • [10] Cranks J., 1984, FREE MOVING BOUNDARI