Quantum Hall effect in semiconductor systems with quantum dots and antidots

被引:2
|
作者
Beltukov, Ya M. [1 ]
Greshnov, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] St Petersburg State Electrotech Univ LETI, St Petersburg 197376, Russia
基金
俄罗斯基础研究基金会;
关键词
MAGNETIC-FIELD; STATES; INAS;
D O I
10.1134/S1063782615040077
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T similar to 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 50 条
  • [41] Optical properties of quantum dots versus quantum antidots: Effects of hydrostatic pressure and temperature
    Naimi, Y.
    Jafari, A. R.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) : 666 - 672
  • [42] Quantum information processing with semiconductor quantum dots
    Nichol, John
    6TH IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM 2022), 2022, : 167 - 167
  • [43] Controllable quantum scars in semiconductor quantum dots
    Keski-Rahkonen, J.
    Luukko, P. J. J.
    Kaplan, L.
    Heller, E. J.
    Rasanen, E.
    PHYSICAL REVIEW B, 2017, 96 (09)
  • [44] Quantum optics with semiconductor quantum dots in microcavities
    Gies, C.
    Ritter, S.
    Florian, M.
    Gartner, P.
    Jahnke, F.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [45] Semiconductor Quantum Dots for Integrated Quantum Photonics
    Hepp, Stefan
    Jetter, Michael
    Portalupi, Simone Luca
    Michler, Peter
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (09)
  • [46] Semiconductor Quantum Networks Using Quantum Dots
    Kim, Je-Hyung
    Richardson, Christopher J. K.
    Leavitt, Richard P.
    Waks, Edo
    2017 XXXIIND GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM OF THE INTERNATIONAL UNION OF RADIO SCIENCE (URSI GASS), 2017,
  • [47] Quantum Communication Using Semiconductor Quantum Dots
    Vajner, Daniel A.
    Rickert, Lucas
    Gao, Timm
    Kaymazlar, Koray
    Heindel, Tobias
    ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (07)
  • [48] Quantum confinement in semiconductor Ge quantum dots
    Ren, SY
    SOLID STATE COMMUNICATIONS, 1997, 102 (06) : 479 - 484
  • [49] MAGNETOPLASMONS AND THE QUANTUM HALL-EFFECT IN SEMICONDUCTOR SUPERLATTICES
    YANG, RQ
    LU, XJ
    TSAI, CH
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (05): : L91 - L95
  • [50] Fractional quantum Hall effect in a dilute magnetic semiconductor
    Betthausen, C.
    Giudici, P.
    Iankilevitch, A.
    Preis, C.
    Kolkovsky, V.
    Wiater, M.
    Karczewski, G.
    Piot, B. A.
    Kunc, J.
    Potemski, M.
    Wojtowicz, T.
    Weiss, D.
    PHYSICAL REVIEW B, 2014, 90 (11):